Direkt zum Seiteninhalt springen

Subtopic 1.1: Wind Energy Technology


A. Englberger, A. Dörnbrack, Impact of the Diurnal Cycle of the Atmospheric Boundary Layer on Wind-Turbine Wakes: A Numerical Modelling Study, Bound.-Lay. Meteorol. 166 (3), 423 (2018) doi:10.1007/s10546-017-0309-3

D. Heimann, A. Englberger, 3D-simulation of sound propagation through the wake of a wind turbine: Impact of the diurnal variability, Appl. Acoust. 141, 393 (2018) doi:10.1016/j.apacoust.2018.06.005

M. Herr, R. Ewert, B. Faßmann, C. Rautmann, S. Martens, et al., Low-Noise Technologies for Wind Turbine Blades. In (Wilson, Alexander G.): Aeroacoustics research in Europe: The CEAS-ASC report on 2016 highlights, J. Sound Vib. 427 (2018) doi:10.1016/j.jsv.2017.10.016

A. Hoffmann, F. Weiß, Controller design for wind turbine load reduction via multiobjective parameter synthesis, J. Phys.: Conf. Ser. 753 (2016) doi:10.1088/1742-6596/753/5/052020

A. Länger-Möller, Impact of wall roughness and turbulence level on the performance of a horizontal axis wind turbine with the U‐RANS solver THETA, Wind Energy 22, 523 (2019) doi:10.1002/we.2304

L. Neuhaus, P. Singh, T. Homeyer, O. Huxdorf, J. Riemenschneider,et al. ,  Mitigating loads by means of an active slat.  J. Phys.: Conf. Ser, 1037 (2018) doi:10.1088/1742-6596/1037/2/022032

S. Schmidt, T. Mahrholz, A. Kühn, P. Wierach, Powder binders used for the manufacturing of wind turbine rotor blades. Part 1: Characterization of resin-binder interaction and preform properties, Polym. Composite 39 (3), 708 (2018) doi:10.1002/pc.23988

A. Suryadi, Kinematic and Acoustic Similarities of Separated Turbulent Boundary Layers, AIAAJ (2019) doi:10.2514/1.J057721

B. van der Wall, P. Lehmann, About the Impact of Wind Turbine Blade Tip Vortices on Helicopter Rotor Trim and Rotor Blade Motion, CEAS Aeronaut. J. 9 (1), 67 (2018) doi:10.1007/s13272-017-0276-x

J. Wagner, T. Gerz, N. Wildmann, K. Gramitzky, Long-term simulation of the boundary layer flow over the double-ridge site during the perdigão 2017 field campaign, Atmos. Chem. Phys 19(2), 1129 (2019) doi:10.5194/acp-19-1129-2019

B. Wieland, S. Ropte, Process Modeling of Composite Materials for Wind-Turbine Rotor Blades: Experiments and Numerical Modeling Materials, 10 (10), 1157 (2017) doi:10.3390/ma10101157

N. Wildmann, N. Vasiljevic, T. Gerz, Wind turbine wake measurements with automatically adjusting scanning trajectories in a multi-doppler lidar setup, Atmos. Meas. Tech. 11 (6), 3801 (2018) doi:10.5194/amt-11-3801-2018


L. Beyland, Rotorblatt für Windkraftanlagen; Patent DE 10 2014 118 004 (2014)

A. Gatter, C. Kessler, R. Bartels, A. Hoffmann, Rotor, Windenergieanlage sowie Verfahren zum Erfassen eines Drehwinkels; Patent DE 10 2016 108 954 A1 (2017)

T. Mahrholz, J. Haunerdinger, Faserverbundbauteil mit Zwischenlagen und Verfahren zu seiner Herstellung; Patent DE 10 2018 108 851.5 (2018)

Subtopic 1.2: PV: Materials and Interfaces

A. Abate, Perovskite Solar Cells Go Lead Free, Joule (2017) doi:10.1016/j.joule.2017.09.007

T. Abzieher, S. Moghadamzadeh, F. Schackmar, H. Eggers, F. Sutterlüti, et al., Electron-Beam-Evaporated Nickel Oxide Hole Transport Layers for Perovskite-Based Photovoltaics Adv. Energy Mat. 1802995 (2019) doi:10.1002/aenm.201802995

P. Becker, J. A. Márquez, J. Just, A. Al-Ashouri, C. Hages, et al., Low temperature synthesis of stable CsPbI3 perovskite layers for solar cells obtained by high throughput experimentation, Adv. Energy Mat. 1900555 in print (2019), doi:10.1002/aenm.201900555

J. Breternitz, S. Schorr, What defines a perovskite? Adv. Energy Mat. 8, 1802366 (2018) doi:10.1002/aenm.201802366

J. C. Hebig, I. Kühn, J. Flohre, T. Kirchartz, Optoelectronic Properties of (CH3NH3)3Sb2I9 Thin Films for Photovoltaic Applications ACS Energy Lett.1 (1), 309-314 (2016) doi:10.1021/acsenergylett.6b00170

F. Hermerschmidt, S.A. Choulis, and E. J. W. List-Kratochvil, Implementing Inkjet-Printed Transparent Conductive Electrodes in Solution-Processed Organic Electronics, Adv. Mater. Technol. 1800474 (2019) doi:10.1002/admt.201800474

D. Hudry, I.A. Howard, R. Popescu, D. Gerthsen, B.S. Richards, Structure-property relationships in lanthanide-doped upconverting nanocrystals: recent advances in understanding core-shell structures, Adv. Mater. 1900623 (2019) doi:10.1002/adma.201900623

T. Kirchartz, T. Marquardt, U. Rau, D. Egger, Impact of Small Phonon Energies on the Charge-Carrier Lifetimes in Metal-Halide Perovskites J. Phys. Chem. Lett. 9, 939 (2018) doi:10.1021/acs.jpclett.7b03414

T. Kirchartz, U. Rau, What makes a good solar cell Adv. Energy Mat. 8, 1703385 (2018) doi:10.1002/aenm.201703385

N. Kiseleva, M.A Filatov, M. Oldenburg, D. Busko, M. Jakoby, et al., The Janus-faced chromophore: a donor–acceptor dyad with dual performance in photon up-conversion, Chem. Commun. 54, 1607-1610 (2018) doi:10.1039/C7CC08930A

M. Köhler, M. Pomaska, F. Lentz, F. Finger, U. Rau, et al., Wet-chemical preparation of silicon tunnel oxides for transparent passivated contacts in crystalline silicon solar cells ACS Appl. Mater. Inter. 10 (17), 14259-14263 (2018) doi:10.1021/acsami.8b02002

F. Lang, N. H. Nickel, J. Bundesmann, S. Seidel, A. Denker, et al., Radiation hardness and self‐healing of perovskite solar cells, Adv. Energy Mat.28, 8726 (2016)doi:10.1002/adma.201603326

S. Li, M. Pomaska, J. Hoß, J. Lossen, F. Pennartz, et al., Poly-Si/SiOx/c-Si passivating contact with 738 mV implied open circuit voltage fabricated by hot-wire chemical vapor deposition Appl. Phys. Lett.s 114 (15), 153901 (2019) doi:10.1063/1.5089650

H. Röhm, T. Leonhard, A.D. Schulz, S. Wagner, M.J. Hoffmann, et al., Ferroelectric properties of perovskite thin-films and their implications for solar energy conversion Adv. Mater. (2019) doi:10.1002/adma.201806661

E.L. Unger, L. Kegelmann, K. Suchan, D. Sörell, L. Korte, et al., Roadmap and roadblocks for the band gap tunability of metal halide perovskites, J. Mater. Chem. A 5, 23 (2017) doi:10.1039/C7TA00404D

D. Wippler, R. G. Wilks, B. E. Pieters, S. J. van Albada, D. Gerlach, et al., Pronounced surface band bending of thin-film silicon revealed by modeling core levels probed with hard x-rays ACS Appl. Mater. Inter. 8, 17685 (2016) doi:10.1021/acsami.6b04666

Subtopic 1.3: PV: Cell design and development

S. Albrecht, M. Saliba, J.P. Correa Baena, F. Lang, L. Kegelmann, et al., Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature, Energ. Environ. Sci. 9, 81 (2016) doi:10.1039/C5EE02965A

D. Baran, T. Kirchartz, S. Wheeler, S. Dimitrov, M. Abdelsamie, et al,. Reduced voltage losses yield 10% efficient fullerene free organic solar cells with >1 V open circuit voltages Energ. Environ. Sci.9 (12), 3783-3793 (2016) doi:10.1039/C6EE02598F

D. Baran, R. S. Ashraf, D. A. Hanifi, M. Abdelsamie, N. Gasparini, et al., Reducing the efficiency–stability–cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells Nat. Mater. 16, 363 (2017) doi:10.1038/nmat4797

S. Gharibzadeh, B. A. Nejand, M. Jakoby, T. Abzieher, D. Hauschild et al., Record Open‐Circuit Voltage Wide‐Bandgap Perovskite Solar Cells Utilizing 2D/3D Perovskite Heterostructure, Adv. Energy Mat. in print (2019) doi:10.1002/aenm.201803699

I.A. Howard, T. Abzieher, I. M. Hossain, H. Eggers, F. Schackmar, et al., Coated and Printed Perovskites for Photovoltaic Applications, Adv. Mater. 1806702 (2019) doi:10.1002/adma.201806702

M. Jost, T Bertram, D. Koushik, J. Marquez, M. Verheijen, et al., 21.6%-Efficient Monolithic Perovskite/Cu(In,Ga)Se2 Tandem Solar Cells with Thin Conformal Hole Transport Layers for Integration on Rough Bottom Cell Surfaces ACS Energy Lett. (2019) doi:10.1021/acsenergylett.9b00135

T. Kirchartz, L. Krückemeier, E. L. Unger, Research Update: Recombination and open-circuit voltage in lead-halide perovskites, APL Mater. 6, 100702 (2018) doi:10.1063/1.5052164

E. Köhnen, M. Jost, A. M. Vilches, P. Tockhorn, A. Al-Ashouri, Highly Efficient Monolithic Perovskite Silicon Tandem Solar Cells: Analyzing the Influence of Current Mismatch on Device PerformanceSustain. Energ. Fuels (2019) doi:10.1039/C9SE00120D

Z. Liu, L. Krückemeier, B. Krogmeier, B. Klingebiel, J. A Márquez, et al., Open-circuit voltages exceeding 1.26 V in planar methylammonium lead iodide perovskite solar cells, ACS Energy Lett. 4, 110 (2019) doi:10.1021/acsenergylett.8b01906

F. Mathies, T. Abzieher, A. Hochstuhl, K. Glaser, A. Colsmann, et al., Multi-layer inkjet printed planar methyl ammonium lead iodide perovskite solar cells, J. Mater. Chem. A 4 19207-19213 (2016) doi:10.1039/C6TA07972E

L. Mazzarella, Y.-H. Lin, S. Kirner, A. B. Morales-Vilches, L. Korte et al.,Infrared Light Management Using a Nanocrystalline Silicon Oxide Interlayer in Monolithic Perovskite/Silicon Heterojunction Tandem Solar Cells with Efficiency above 25% Adv. Energy Mat.  9, 1803241 (2019) doi:10.1002/aenm.201803241

A.B. Morales-Vilches, A. Cruz, S. Pingel, S. Neubert, L. Mazzarella et al., ITO-Free Silicon Heterojunction Solar Cells With ZnO:Al/SiO2 Front Electrodes Reaching a Conversion Efficiency of 23% IEEE J. Photovolt. 9 (1), 34-39 (2019) doi:10.1109/JPHOTOV.2018.2873307

M Saliba, JP Correa-Baena, CM Wolff, M Stolterfoht, N Phung et al., How to Make over 20% Efficient Perovskite Solar Cells in Regular (n–i–p) and Inverted (p–i–n) Architectures Chem. Mater. 30 (13), 4193-4201 (2018) doi:10.1021/acs.chemmater.8b00136

S.S. Schmidt, C. Wolf, H. Rodriguez-Alvarez, J.-P. Bäcker, C.A. Kaufmann et al., Adjusting the Ga grading during fast atmospheric processing of Cu(In,Ga)Se2 solar cell absorber layers using elemental selenium vapor,Prog. Photovoltaics Res. Appl. doi:10.1002/pip.2865

Q. Wang, N. Phung, D. Di Girolamo, P. Vivo, A. Abate, Enhancement in lifespan of halide perovskite solar cells, Energ. Environ. Sci. 12 (3), 865-886 (2019) doi:10.1039/C8EE02852D

R.G. Wilks and M. Bär, Perovskite solar cells: Danger from within, Nature Energy 2, 16204 (2017) doi:10.1038/nenergy.2016.204

Subtopic 1.4: PV: Modules, stability, performance and specific applications

A. Farooq, I.M. Hossain, S. Moghadamzadeh, J. Schwenzer, T. Abzieher, et al., Spectral dependence of degradation under ultraviolet light in perovskite solar cells, ACS Appl. Mater. Inter. 10, 21985-21990 (2018) doi:10.1021/acsami.8b03024

M. Jaysankar, M. Filipič, B. Zielinski, R. Schmager, W. Song, et al., Perovskite–silicon tandem solar modules with optimised light harvesting Energ. Environ. Sci. 11, 1489–98 (2018) doi:10.1039/C8EE00237A

M. Jošt,E. Köhnen, A. M. Vilches, B. Lipovšek, K. Jäger, B. Macco, et al., Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield Energ. Environ. Sci. 12 (2018) doi:10.1039/c8ee02469c

S. Kirner, P. Bogdanoff, B. Stannowski, R. van de Krol, B. Rech, et al., Architectures for scalable integrated photo driven catalytic devices-A concept study Int. J. Hydrogen Energ. 41 (2016) doi:10.1016/j.ijhydene.2016.05.088

M. Langenhorst, B. Sautter, R. Schmager, J. Lehr, E Ahlswede, et al., Energy yield of all thin‐film perovskite/CIGS tandem solar modules, Prog. Photovoltaics Res. Appl. 27, 290-298 (2019) doi:10.1002/pip.3091

S. Merdes, A. Steigert, F. Ziem, I. Lauermann, R. Klenk, et al., Influence of Cu(In,Ga)(Se,S)2 surface treatments on the properties of 30x30 cm2 large area modules with atomic layer deposited Zn(O,S) buffers Thin Solid Films, 574, 28-31 (2015) doi:10.1016/j.tsf.2014.11.049

U. W. Paetzold, M. Jaysankar, R. Gehlhaar, E. Ahlswede, S. Paetel, et al., Scalable perovskite/CIGS thin-film solar module with power conversion efficiency of 17.8%  J. Mater. Chem. A 5, 9897–906 (2017) doi:10.1039/C7TA01651D

A. Roslizar, S. Dottermusch, F. Vüllers, M.N. Kavalenka, M. Guttmann, et al., Self-cleaning performance of superhydrophobic hot-embossed fluoropolymer films for photovoltaic modules Sol. Energ. Mat. Sol. C. 189, 188–96 (2019), doi:10.1016/j.solmat.2018.09.017

F. Sandbaumhüter, S.N. Agbo, C.L. Tsai, O. Astakhov, S Uhlenbruck, et al. Compatibility study towards monolithic self-charging power unit based on all-solid thin-film solar module and battery, J. Power Sources 365, 303-307 (2017) doi:10.1016/j.jpowsour.2017.08.103

M. Schweiger, J. Bonilla, W. Herrmann, A. Gerber, U. Rau, Performance stability of photovoltaic modules in different climates Prog. Photovoltaics Res. Appl. 25 (12), 968-981 (2017) doi:10.1002/pip.2904

B. Turan, J.P. Becker, F Urbain, F. Finger, U. Rau, et al. Upscaling of integrated photoelectrochemical water-splitting devices to large areas Nat. Commun. 7, 12681 (2016) doi:10.1038/ncomms12681

C. Ulbrich, D. C. Jordan, S. R. Kurtz, A. Gerber, U. Rau, Direct analysis of the current density vs. voltage curves of a CdTe module during outdoor exposure, Sol. Energy 113, 88 (2015) doi:10.1016/j.solener.2014.12.004

F. Urbain, V. Smirnov, J. P. Becker, A. Lambertz, F Yang et al. Multijunction Si photocathodes with tunable photovoltages from 2.0 V to 2.8 V for light induced water splitting Energ. Environ. Sci. 9 (1), 145-154 doi:10.1039/C5EE02393A

Subtopic 1.5: PV: Simulations, Theory, Optics, and Analytics (STOA)

D. Abou-Ras, M. Bär, R. Caballero, R. Gunder, C. Hages et al., Advanced characterization and in-situ growth monitoring of Cu(In,Ga)Se2 thin films and solar cells Sol. Energy 170, 102-112 (2018) doi:10.1016/j.solener.2018.04.032

P. Brenner, O. Bar-On, M. Jakoby, I. Allegro, B. S. Richards, et al., Continuous wave amplified spontaneous emission in phase-stable lead halide perovskites Nat. Commun. 10, 988 (2019) doi:10.1038/s41467-019-08929-0

A. Gerber, V. Huhn, T.M.H. Tran, M. Siegloch, Y. Augarten, et al., Advanced large area characterization of thin-film solar modules by electroluminescence and thermography imaging techniques Sol. Energ. Mat. Sol. C. 135, 35-42 (2015) doi:10.1016/j.solmat.2014.09.020

C. J. Hages, A. Redinger, S. Levcenko, H. Hempel, M. J. Koeper, et al., Identifying the real minority carrier lifetime in nonideal semiconductors: a case study of kesterite materials, Adv. Energy Mat. 7, 1700167/1-10 (2017) doi:10.1002/aenm.201700167

C. Hartmann, G. Sadoughi, R. Félix, E. Handick, H.W. Klemm, et al., Spatially-Resolved Insight into the Chemical and Electronic Structure of Solution Processed Perovskites – Why to (Not) Worry about Pin-Holes, Adv. Mater. Interfaces 171420 (2018) doi:10.1002/admi.201701420

T. Kirchartz, S. Korgitzsch, J. Hüpkes, R. Quiroz, C. J.  Brabec, Performance Evaluation of Semitransparent Perovskite Solar Cells for Application in Four-Terminal Tandem Cells ACS Energy Lett. 3, 1861 – 1867 (2018) doi:10.1021/acsenergylett.8b00598

T. Kirchartz, U. Rau, Decreasing Radiative Recombination Coefficients via an Indirect Band Gap in Lead Halide Perovskites J. Phys. Chem. Lett.8 (6), 1265-1271 (2017) doi:10.1021/acs.jpclett.7b00236

T. Kirchartz, F.  Staub, U. Rau, Impact of Photon Recycling on the Open-Circuit Voltage of Metal Halide Perovskite Solar Cells ACS Energy Lett.1, 731-739 (2017) doi:10.1021/acsenergylett.6b00223

B. Krogmeier, F. Staub, D. Grabowski, U. Rau, T. Kirchartz, Quantitative Analysis of the Transient Photoluminescence of CH3NH3PbI3/PC61BM Heterojunctions by Numerical Simulations Sustain. Energ. Fuels 2, 1027 (2018) doi:10.1039/c7se00603a

J. Lehr, M. Langenhorst, R. Schmager, S. Kirner, U. Lemmer, et al., Energy yield modelling of perovskite/silicon two-terminal tandem PV modules with flat and textured interfaces Sustain. Energ. Fuels 2, 2754–61 (2018) doi:10.1039/C8SE00465J

U. Rau, U. W. Paetzold, T.  Kirchartz, Thermodynamics of light management in photovoltaic devices Phys. Rev. B 90 (3) (2014) doi:10.1103/PhysRevB.90.035211

M. F. Schumann, M. Langenhorst, M. Smeets, K. Ding, U. W. Paetzold, et al., All‐Angle Invisibility Cloaking of Contact Fingers on Solar Cells by Refractive Free‐Form Surfaces, Adv. Opt. Mater. 5, 1700164 (2017) doi:10.1002/adom.201700164

D.E. Starr, G. Sadoughi, E. Handick, R.G. Wilks, J.H. Alsmeier, et al., Direct observation of an inhomogeneous chlorine distribution in CH3NH3PbI3-xClx layers: surface depletion and interface enrichment Energ. Environ. Sci.8, 1609 (2015) doi:10.1039/C5EE00403A

F. Staub, H. Hempel, J. C. Hebig, J. Mock, U. W. Paetzold, et al., Beyond Bulk Lifetimes: Insights into Lead Halide Perovskite Films from Time-Resolved Photoluminescence Phys. Rev. Appl. 6 (4), 044017 (2016) doi:10.1103/PhysRevApplied.6.044017

M. Stolterfoht, C. M. Wolff, J. A. Márquez, S. Zhang, C. Hages, et al., Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells Nature Energy 3, (2018) doi:10.1038/s41560-018-0219-