Direkt zum Seiteninhalt springen

Subtopic 4.1: Gas turbines

M. Hohloch, A. Huber, M. Aigner, Analysis of Operational Strategies of a SOFC/Micro Gas Turbine Hybrid Power Plant. Journal of Engineering for Gas Turbines and Power 140, 081703-081703-9 (2018) doi.org/10.1115/1.4038605

M. Severin, O. Lammel, H. Ax, R. Lückerath, W. Meier, M. Aigner, J. Heinze, High momentum jet flames at elevated pressure, B: Detailed investigation of flame stabilization with simultaneous PIV and OH-PLIF, Journal of Engineering Gas Turbines and Power 140, 041508 (2018) doi.org/10.1115/1.4038126

T. Krummrein, M. Henke, P. Kutne, A Highly Flexible Approach on the Steady-State Analysis of Innovative Micro Gas Turbine Cycles, Journal of Engineering Gas Turbines and Power 140, 121018 (2018) doi:10.1115/1.4040855

M. Stöhr, K.P. Geigle, R. Hadef, I. Boxx, C.D. Carter, M. Grader, P. Gerlinger, Time-resolved study of transient soot formation in an aero-engine model combustor at elevated pressure, Proc. Combust. Inst. 37:4, 5421-5428 (2018) doi:10.1016/j.proci.2018.05.122

M. Schnoes, C. Voß, E. Nicke, Design Optimization of a Multi-Stage Axial Compressor Using Throughflow and a Database of Optimal Airfoils. Journal of the Global Power and Propulsion Society, 2, 516-528 (2018) doi:10.22261/JGPPS.W5N91I

F. Grimm, G. Reichling, R. Ewert, J. Dierke, B. Noll, M. Aigner, Stochastic and Direct Combustion Noise Simulation of a Gas Turbine Model Combustor, Acta Acustica United with Acustica 103, 262-275 (2017) doi:10.3813/AAA.919055

M. Elfert, A. Weber, D. Wittrock, A. Peters, C. Voss, E. Nicke, Experimental and Numerical Verification of an Optimization of a Fast Rotating High- Performance Radial Compressor Impeller. ASME Journal of Turbomachinery, 139 (10), 101007 (2017) doi:10.1115/1.4036357

P. Gerlinger, Lagrangian transported MDF methods for compressible high speed flows. Journal of Computational Physics, 339, 68-95 (2017) doi:10.1016/j.jcp.2017.02.049

Eberle, C., Gerlinger, P., Aigner, M.  A sectional PAH model with reversible PAH chemistry for CFD soot simulations, Combust. Flame 179, 63-73 (2017) doi:10.1016/j.combustflame.2017.01.019

R. Singh, K.H. Rauwald, E. Wessel, G. Mauer, S Schruefer, et al., Effects of substrate roughness and spray-angle on deposition behavior of cold-sprayed Inconel 718, Surface and Coatings Technology 319, 249 (2017) doi:10.1016/j.surfcoat.2017.03.072

E. Bakan, R. Vaßen, Ceramic top coats of plasma-sprayed thermal barrier coatings: materials, processes, and properties, Journal of Thermal Spray Technology26, 992 (2017) doi:10.1007/s11666-017-0597-7

D. Zhou, O. Guillon, R. Vaßen, Development of YSZ thermal barrier coatings using axial suspension plasma spraying, Coatings7, 12 (2017) doi:10.3390/coatings7080120

M. Köhler, P. Oßwald, H.-B. Xu, T. Kathrotia, C. Hasse, U. Riedel, Speciation data for fuel-rich methane oxy-combustion and reforming under prototypical partial oxidation conditions, Chem. Eng. Sci. 139 249-260 (2016) doi10.1016/j.ces.2015.09.033

H. Chen, A. Kauffmann, B. Gorr, D. Schliephake, C. Seemüller, J.N. Wagner, H.J. Christ, M. Heilmaier, Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al, Journal of Alloys and Compounds 661, 206-215 (2016) doi:10.1016/j.jallcom.2015.11.050

G. Goinis, E. Nicke, Optimizing surge margin and efficiency of a transonic compressor, Proceedings of ASME Turbo Expo 2016, GT2016-57896 (2016) doi 10.1115/GT 2016-57896

B. Gorr, M. Azim, H.-J. Christ, T. Mueller, D. Schliephake, M. Heilmaier, Phase Equilibria, Microstructure, and High Temperature Oxidation Resistance of Novel Refractory High-Entropy Alloys, J. All. Comp. 624 270-278 (2015) doi:10.1016/j.jallcom.2014.11.012

C.M. Arndt, M. Severin, C. Dem, M. Stöhr, A.M. Steinberg, W. Meier, Experimental analysis of thermo-acoustic instabilities in a generic gas turbine combustor by phase-correlated PIV, chemiluminescence, and laser Raman scattering measurements. Experiments in Fluids 56, Article 69 (2015) doi:10.1007/s00348-015-1929-3

Subtopic 4.2: Concentrating Solar Power (CSP)

S. Siegrist, H. Stadler, B. Hoffschmidt, Wind tunnel measurements of forced convective heat loss from multi-megawatt cavities of solar central receiver systems. Solar Energy, 2018. https://elib.dlr.de/124226

F. Klein, T. Wegener, A. Litnovsky, M. Rasinski, X. Tan, et al., On Oxidation Resistance Mechanisms at 1273 K of Tungsten-Based Alloys Containing Chromium and Yttria, Metals 8, 488 (2018) doi:10.3390/met8070488

W. H. Stein, R. Buck (2017) Advanced power cycles for concentrated solar power.  Solar Energy, 152, pp. 91-105.  Elsevier. doi:10.1016/j.solener.2017.04.054

R. Pitz-Paal, Still small but learning fast, Nature Energy 2, 17095 (2017). doi:10.1038/nenergy.2017.95

R. Flesch, C. Frantz, D. Maldonado Quinto, P. Schwarzbözl, (2017) Towards an optimal aiming for molten salt power towers. Solar Energy http://elib.dlr.de/113517

A. Heinzel, W. Hering, J. Konys, L. Marocco, K. Litfin, et. al., Liquid Metals as Efficient High‐Temperature Heat‐Transport Fluids, Energy Technol. 5, 1026 (2017) doi:10.1002/ente.201600721

N. Diez De Los Rios Ramos, W. Hering, A. Weisenburger, M. Stüber, A. Onea, et. al., Design and construction of the ATEFA facility for experimental investigations of AMTEC test modules, IOP Conf. Ser.-Mat. Sci. 228 (1), 012014 (2017) doi:10.1088/1757-899X/228/1/012014

L. Marocco, G. Cammi, J. Flesch, T. Wetzel, Numerical analysis of a solar tower receiver tube operated with liquid metals, Int. J. Therm. Sci. 105, 22 (2016)  doi.org/10.1016/j.ijthermalsci.2016.02.002

D. Sergeev, E. Yazhenskikh, N. Talukder, D. Kobertz, K. Hack, M. Müller, Thermodynamics of the reciprocal NaCl-KCl-NaNO3-KNO3 system, Calphad 53, 97 (2016) doi:10.1016/j.calphad.2016.04.001

J. Reiser, M. Rieth, A. Möslang, H. Greuner, D.E.J. Armstrong, et.al., Tungsten (W) Laminate Pipes for Innovative High Temperature Energy Conversion Systems, Adv. Eng. Mater. 17 (4), 491 (2015) doi:10.1002/adem.201400204   

W. Wu, D. Trebing, L. Amsbeck, R. Buck, R. Pitz-Paal (2015) Prototype Testing of a Centrifugal Particle Receiver for High-Temperature Concentrating Solar Applications. Solar Energy Engineering, 137. doi:10.1115/1.4030657

W. Wu, R. Uhlig, R. Buck, R. Pitz-Paal (2015) Numerical Simulation of a Centrifugal Particle Receiver for High-Temperature Concentrating Solar Applications.  Numerical Heat Transfer; Part A: Applications, 68 (2), pp. 133-149. doi:10.1080/10407782.2014.977144

B. Gobereit, L. Amsbeck, R. Buck, R. Pitz-Paal, M. Röger, H. M. Müller-Steinhagen (2015) Assessment of a Falling Solid Particle Receiver with Numerical Simulation.  Solar Energy, 2015 (115), pp. 505-517. Elsevier. doi:10.1016/j.solener.2015.03.013

J. Pacio, C. Singer, T. Wetzel, R. Uhlig, Thermodynamic evaluation of liquid metals as heat transfer fluids in concentrated solar power plants,  Appl. Therm. Eng. 60 (1-2), 295 (2013) doi:10.1016/j.applthermaleng.2013.07.010

D. Sergeev, D. Kobertz, M. Müller, Thermodynamics of the NaCl-KCl System, Thermochim Acta 606, 25 (2015) doi:10.1016/j.tca.2015.03.003

Subtopic 4.3: Thermal Energy Storage

A. Bonk, S. Sau, N. Uranga, M. Hernaiz, T. Bauer, Advanced heat transfer fluids for direct molten salt line-focusing CSP plants, Progress in Energy and Combustion Science 67, 69-87 (2018) doi:10.1016/j.pecs.2018.02.002

C. Villada, A. Bonk, T. Bauer, F. Bolívar, High-temperature stability of nitrate/nitrite molten salt mixtures under different atmospheres, Applied Energy 226, 107-115 (2018) doi:10.1016/j.apenergy.2018.05.101

K. Niedermeier, J. Flesch, L. Marocco, Th. Wetzel, Assessment of thermal energy storage options in a sodium-based CSP plant. Appl. Therm. Eng. 107, 386 (2016) doi:10.1016/j.applthermaleng.2016.06.152

K. Niedermeier, L. Marocco, J. Flesch, G. Mohan, J. Coventry, Th. Wetzel, Performance of molten sodium vs. molten salts in a packed bed thermal energy storage, Appl. Therm. Eng. 141, 368 (2018) doi:10.1016/j.applthermaleng.2018.05.080

R. Fetzer, A. Weisenburger,A. Jianu, G. Müller, Oxide scale formation of modified FeCrAl coatings exposed to liquid lead, Corros. Sci. 55, 213-218 (2012) doi:10.1016/j.corsci.2011.10.019

J. Pacio, L. Marocco,Th. Wetzel, Review of data and correlations for turbulent forced convective heat transfer of liquid metals in pipes, Heat Mass Transfer 51, 153 (2015) doi:10.1007/s00231-014-1392-3

A. Heinzel, A. Weisenburger, G. Müller, Long-term corrosion tests of Ti3SiC2 and Ti2AlC in oxygen containing LBE at temperatures up to 700 °C, J. Nucl. Mater. 482, 114 (2016) doi:10.1016/j.jnucmat.2016.10.007

A. Bayon, M. Liu, D. Sergeev, M. Grigore, F. Bruno, M. Müller, Novel solid–solid phase-change cascade systems for high-temperature thermal energy storage, Sol Energy177, 274 (2019) doi:10.1016/j.solener.2018.10.085

D. Sergeev, E. Yazhenskikh, N. Talukder, D. Kobertz, K. Hack, M. Müller, Thermodynamics of the reciprocal NaCl-KCl-NaNO3-KNO3 system, Calphad 53, 97 (2016) doi:10.1016/j.calphad.2016.04.001

B. Kuhn, M. Talik, L. Niewolak, J. Zurek, H. Hattendorf, et al., Development of high chromium ferritic steels strengthened by intermetallic phases, Mat. Sci. Eng. A 594, 372 (2014) doi:10.1016/j.msea.2013.11.048

J. Vogel, J. Felbinger, M. Johnson, Natural convection in high temperature flat plate latent heat thermal energy storage systems, Applied Energy 184, 184-196 (2016), doi:10.1016/j.apenergy.2016.10.001

M. Schmidt, A. Gutierrez, M. Linder, Thermochemical energy storage with CaO/Ca(OH)2 – Experimental investigation of the thermal capability at low vapor pressures in a lab scale reactor, Applied Energy 188, 672-681 (2017) doi:10.1016/j.apenergy.2016.11.023

V. Dreißigacker, Power-to-heat in adiabatic compressed air energy storage power plants for cost reduction and increased flexibility. Heat and Mass Transfer. 54, 4, 955-962 (2017) doi:10.1007/s00231-017-2197-y

D. Gibb, M. Johnson, J. Romaní, J. Gasia, L.F. Cabeza, A. Seitz, Process integration of thermal energy storage systems – evaluation methodology and case studies, Applied Energy 230, 750-760 (2018). doi:10.1016/j.apenergy.2018.09.001

W.-D. Steinmann, The CHEST (Compressed Heat Energy Storage) concept for facility scale thermo mechanical energy storage. Energy 69, 543-552 (2014) doi:10.1016/j.energy.2014.03.049

Subtopic 4.4: GeoEnergy

P. Steinmetz, Y. C. Yabansu, J. Hötzer, M. Jainta,B. Nestler, S. R. Kalidindi, Analytics for microstructure datasets produced by phase-field simulations. Acta Materialia 103, S. 192–203 (2016) doi:10.1016/j.actamat.2015.09.047

A. Zang, O. Stephansson, L. Stenberg, K. Plenkers, S. Specht, C. Milkereit, et al., Hydraulic fracture monitoring in hard rock at 410 m depth with an advanced fluid-injection protocol and extensive sensor array. Geophys. J. Int. 208 (2), S. 790–813 (2017) doi:10.1093/gji/ggw430

J. Hötzer, O. S. Tschukin, M. B. Said, M. Berghoff, M. Jainta, G. Barthelemy, et al., Calibration of a multi-phase field model with quantitative angle measurement. J Mater Sci 51 (4), S. 1788–1797 (2016): doi:10.1007/s10853-015-9542-7

E. Schill, A. Genter, T. Kohl, N. Cuenot, Enhancement of productivity in the Soultz EGS site by 20 hydraulic and chemical stimulation experiments and long-term circulation, Geothermics, 70 (2017) 110-124, doi:10.1016/j.geothermics.2017.06.003

E. Gaucher, M. Schoenball, O. Heidbach, A. Zang, P. Fokker, J-D. van Wees, T. Kohl, Induced seismicity in geothermal reservoirs. A review of forecasting approaches. Renewable and Sustainable Energy Reviews 52, S. 1473–1490 (2015) doi:10.1016/j.rser.2015.08.026

S. Held, A. Genter, T. Kohl, T. Kölbel, J. Sausse, M. Schoenball, Economic evaluation of geothermal reservoir performance through modeling the complexity of the operating EGS in Soultz-sous-Forêts. Geothermics 51, S. 270–280 (2014) doi:10.1016/j.geothermics.2014.01.016

C. Meller,E. Schill, J.  Bremer, O. Kolditz, A. Bleicher, C. Benighaus, P. Chavot, M. Gross, A. Pellizzone, O. Renn, F. Schilling, T. Kohl, Acceptability of geothermal installations: A geoethical concept for GeoLaB, Geothermics, 73, 133-145, (2018) doi:10.1016/j.geothermics.2017.07.008

K. Menberg, S. Pfister, P. Blum, P. Bayer, A matter of meters. State of the art in the life cycle assessment of enhanced geothermal systems. Energy Environ. Sci. 9 (9), S. 2720–2743 (2016) doi:10.1039/C6EE01043A

J. Meixner, J. C. Grimmer, A. Becker, E. Schill, T. Kohl, Comparison of different digital elevation models and satellite imagery for lineament analysis: Implications for identification and spatial arrangement of fault zones in crystalline basement rocks of the southern Black Forest (Germany), Journal of Structural Geology, 108, 256-268 (2018) doi:10.1016/j.jsg.2017.11.006

M. Schoenball, L. Dorbath, E. Gaucher, J.F. Wellmann, T. Kohl, Change of stress regime during geothermal reservoir stimulation. GRL 41 (4), S. 1163–1170 (2014) doi:10.1002/2013GL058514

Y. Abdelfettah, P. Sailhac, H. Larnier, P.-D. Matthey, E. Schill, Continuous and time-lapse magnetotelluric monitoring of low volume injection at Rittershoffen geothermal project, northern Alsace – France, Geothermics, 71, 1-11 (2018) doi:10.1016/j.geothermics.2017.08.004

M. Stoll,F. M. Huber, G. K. Darbha,E. Schill, T. Schafer, Impact of gravity, collector surface roughness and fracture orientation on colloid retention kinetics in an artificial fracture. Journal of colloid and interface science 475, S. 171–183 (2016) doi:10.1016/j.jcis.2016.04.045

Y. Nusiaputra, H-J. Wiemer, D. Kuhn, Thermal-Economic Modularization of Small, Organic Rankine Cycle Power Plants for Mid-Enthalpy Geothermal Fields. Energies 7 (7), S. 4221–4240 (2014) doi:10.3390/en7074221

N. Mundhenk, P. Huttenloch, R. Bässler, T. Kohl, H. Steger, R. Zorn, Electrochemical study of the corrosion of different alloys exposed to deaerated 80°C geothermal brines containing CO2.  Corrosion Science 84, S. 180–188 (2014) doi:10.1016/j.corsci.2014.03.027

R. Haas-Nüesch, F. Heberling, D. Schild, J. Rothe, K. Dardenne, S. Jähnichen, E. Eiche, C. Marquardt, V. Metz, T. Schäfer, Mineralogical characterization of scalings formed in geothermal sites in the Upper Rhine Graben before and after the application of sulfate inhibitors. Geothermics, 71, 264-273 (2018) doi:10.1016/j.geothermics.2017.10.006

Subtopic 4.5: High Temperature Heat Pumps

A. Thess, Thermodynamic Efficiency of Pumped Heat Electricity Storage, Phys. Rev. Lett., 111, 110602 (2013), doi:10.1103/PhysRevLett.111.110602

K.K. Cao, A. Nitto, E. Sperber, A. Thess, Expanding the horizons of power-to-heat: Cost assessment for new space heating concepts with Wind Powered Thermal Energy Systems, Energy, 164, 925-936(2018), doi:10.1016/j.energy.2018.08.173

M. Schäfer, A Thess, Simulation of a closed low-pressure honeycomb adsorber for thermal energy storage; Int. J. Heat Mass Transf., 126, 796–807 (2018), doi:10.1016/j.ijheatmasstransfer.2018.05.0520017-9310

M. Schaefer, A. Thess, One-dimensional model of a closed low-pressure adsorber for thermal energy storage, Int. J. Heat Mass Transf., 117, 571-583 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.095

C. Weidermann, I. Sokolov, A. Thess, Lorentz Force and Joule Heat Induced in an Electrically Conducting Plate Moving With Time-Dependent Velocity Under the Influence of a Homogeneous Magnetic Field, IEEE Transactions on Magnetics, 50, 8, 1-9 (2014). https://doi.org/10.1109/TMAG.2014.2309938

S. Moldenhauer, A. Thess, C. Holtmann, C. Fernández-Aballí, Thermodynamic analysis of a pulse tube engine, Energy Conversion and Management, 65, 810–818 (2013). https://doi.org/10.1016/j.enconman.2012.03.013