Subtopic 2.1: Digitalization and Systems Technology for Flexibility Solutions
- D. Anagnostos, T. Schmidt, S. Cavadias, D. Soudris, J. Poortmans, F. Catthoor: A Method for Detailed, Short-Term Energy Yield Forecasting of Photovoltaic Installations, Renewable Energy 130, 122 (2019) doi:10.1016/j.renene.2018.06.058.
- P. Kuhn, B. Nouri, S. Wilbert, C. Prahl, N. Kozonek, T. Schmidt, Z. Yasser, L. Ramirez, L. Zarzalejo, A. Meyer, L. Vuilleumier, D. Heinemann, P. Blanc, R. Pitz-Paal, Validation of an All-Sky Imager–Based Nowcasting System for Industrial PV Plants. Progress in Photovoltaics: Research and Applications 26, 608, (2018) doi:10.1002/pip.2968.
- S. Arens, K. Derendorf, F. Schuldt, K. von Maydell, C. Agert, Effect of EV Movement Schedule and Machine Learning-Based Load Forecasting on Electricity Cost of a Single Household, Energies 11, 2913 (2018) doi:10.3390/en11112913.
- M. Kühnel, B. Hanke, S. Geißendörfer, K. von Maydell, C. Agert, Energy forecast for mobile Photovoltaic systems with focus on trucks for cooling applications, Progress in Photovoltaics 25, 525, (2017) doi:10.1002/pip.2886.
- D. Peters, R. Völker, T. Kilper, M. Calais, T. Schmidt, C. Carter, K. von Maydell, C. Agert, Model-Based Design and Simulation of Control Strategies to Maximize the PV Hosting Capacity in Isolated Diesel Networks - Using Solar Short-Term Forecasts for Predictive Control of Diesel Generation Proc. of 32nd European Photovoltaic Solar Energy Conference and Exhibition (2016) doi: 10.4229/EUPVSEC20162016-6EO.1.4.
- P. Schäfer, H.G. Westerholt, A.M. Schweidtmann, S. Ilieva, A. Mitsos, Model-based bidding strategies on the primary balancing market for energy-intense processes, Comput. Chem. Eng. 120, 4 (2019) doi:10.1016/j.compchemeng.2018.09.026
- P. Kohlhepp, H. Harb, et int., D. Müller, V. Hagenmeyer, Large-scale grid integration of residential thermal energy storages as demand-side flexibility resource: A review of international field studies, Renew. Sust. Energ. Rev. 101, 527 (2019) doi:10.1016/j.rser.2018.09.045
- S. Deutz, et int., W. Leitner, A. Mitsos, S. Pischinger, A. Bardow, Cleaner production of cleaner fuels: wind-to-wheel–environmental assessment of CO2-based oxymethylene ether as a drop-in fuel, Energ. Environ. Sci. 11, 331 (2018) doi:10.1039/C7EE01657C
- A. Mitsos, N. Asprion, C. A. Floudas, et al., Challenges in process optimization for new feedstocks and energy sources, Comput. Chem. Eng. 113, 209 (2018) doi:10.1016/j.compchemeng.2018.03.013
- T. Schütz, X. Hu, M. Fuchs, D. Müller, Optimal design of decentralized energy conversion systems for smart microgrids using decomposition methods, Energy 156, 250 (2018) doi:10.1016/j.energy.2018.05.050
- B. Bahl, M. Lampe, P. Voll, A. Bardow, Optimization-based identification and quantification of demand-side management potential for distributed energy supply systems, Energy 135, 889 (2017) doi:10.1016/j.energy.2017.06.083
- L. Barth, V. Hagenmeyer, N. Ludwig, D. Wagner,How much demand side flexibility do we need?: Analyzing where to exploit flexibility in industrial processes, e-Energy`18 Proceedings 43 (2018) doi: 10.1145/3208903.3208909
- S. Waczowicz, I. Konotop, D. Westermann, V. Hagenmeyer, R. Mikut, et al., Virtual Storages as Theoretically Motivated Demand Response Models for Enhanced Smart Grid Operations, Energy Technol., 4, 163 (2016), doi:10.1002/ente.20150031
- H. Schwarz, V. Bertsch, W. Fichtner,Two-stage stochastic, large-scale optimization of a decentralized energy system: a case study focusing on solar PV, heat pumps and storage in a residential quarter, OR Spectrum 40, 265 (2017) doi: 10.1007/s00291-017-0500-4
- P. Jochem, M. Schönfelder, W. Fichtner,An Efficient Two-stage Algorithm for Decentralized Scheduling of Micro-CHP Units, Eur. J. Oper. Res. 245, 862 (2015) doi:10.1016/j.ejor.2015.04.016
- G. Elbez, H. Keller, V. Hagenmeyer, A New Classification of Attacks against the Cyber-Physical Security of Smart Grids. ACM 13th International Conference on Availability,Reliability and Security, (2018) doi:10.1145/3230833.3234689
Subtopic 2.2: Design, Operation and Digitalization of the Future Energy Grids
- S. P. Melo, U. Brand, T. Vogt, J-.S. Telle, F. Schuldt, K. von Maydell, Primary frequency control provided by hybrid battery storage and power-to-heat system, Applied Energy 233, 220 (2019) doi:10.1016/j.apenergy.2018.09.177
- M. Kühnel, B. Hanke, Y. Baranova, O. Weigel, I.W. Stuermer, A. McMaster, S. Maebe, K. von Maydell, Design of Hybrid-Minigrids in South African Rural Areas under Consideration of Social and Cultural Aspects, Proc. of 32nd European Photovoltaic Solar Energy Conference and Exhibition (2018) doi: 10.4229/35thEUPVSEC20182018-6CO.4.4
- S. Sass, A. Mitsos, Optimal operation of dynamic (energy) systems: When are quasi-steady models adequate? Comput. Chem. Eng. 124, 133 (2019) doi:10.1016/j.compchemeng.2019.02.011
- A, M. Schweidtmann, A. Mitsos,Deterministic global optimization with artificial neural networks embedded, J. Optimiz. Theory App. 180, 925 (2019) doi:10.1007/s10957-018-1396-0
- H. Harb, J. N. Paprott, et int., R. Streblow, D. Müller, Decentralized scheduling strategy of heating systems for balancing the residual load, Build. Environ. 86, 132 (2015) doi:10.1016/j.buildenv.2014.12.015
- D. Müller, A. Monti, S. Stinner, T. Schlösser, T. Schütz, et. al., Demand side management for city districts, Build. Environ. 91, 283 (2015) doi:10.1016/j.buildenv.2015.03.026
- M. Lauster, J. Teichmann, M. Fuchs, R. Streblow, D. Müller, Low order thermal network models for dynamic simulations of buildings on city district scale, Build. Environ. 73, 223 (2014) doi:10.1016/j.buildenv.2013.12.016
- D.E. Hollermann, D.F. Hoffrogge, F. Mayer, M. Hennen, A. Bardow, Optimal (n− 1)-reliable design of distributed energy supply systems, Comput. Chem. Eng. 121, 317(2019) doi:10.1016/j.compchemeng.2018.09.029
- N. Baumgärtner, B. Bahl, M. Hennen, A. Bardow, RiSES3: Rigorous Synthesis of Energy Supply and Storage Systems via time-series relaxation and aggregation, Comput. Chem. Eng. 127, 127 (2019) doi:10.1016/j.compchemeng.2019.02.006
- D.E. Majewski, M. Wirtz, M. Lampe, A. Bardow, Robust multi-objective optimization for sustainable design of distributed energy supply systems, Comput. Chem. Eng. 102, 26 (2017) doi:10.1016/j.compchemeng.2016.11.038
- T. Leibfried, T. Mchedlidze, N. Meyer-Hübner, D. Wagner, F. Wegner et al., Operating Power Grids with Few Flow Control Buses, e-Energy`15 Proceedings, 289 (2015) doi: 10.1145/2768510.2768521
- R. Sander, M. Suriyah, T. Leibfried, Characterization of a Countercurrent Injection-Based HVDC Circuit Breaker, IEEE T. Power Electr. 33, 2948 (2018) doi:10.1109/TPEL.2017.2709785
- N. Meyer-Huebner, M. Suriyah, T. Leibfried, Distributed Optimal Power Flow in Hybrid AC-DC Grids, IEEE T Power Syst, (2019) doi:10.1109/TPWRS.2019.2892240
- V. Bertsch, W. Fichtner, A participatory multi-criteria approach for power generation and transmission planning, Ann. Oper. Res. 245, 177 (2016) doi:10.1007/s10479-015-1791-y
- T. Brown, J. Hörsch, D. Schlachtberger, PyPSA: Python for Power System Analysis, J. Open Res. Softw., 6, (2018) doi:10.5334/jors.188
- D. Schlachtberger, T. Brown, S. Schramm, M. Greiner, The Benefits of Cooperation in a Highly Renewable European Electricity System, Energy 134, 469 (2017) doi:10.1016/j.energy.2017.06.004
- T. Mühlpfordt, T. Faulwasser, L. Roald, V. Hagenmeyer, Solving optimal power flow with non-gaussian uncertainties via polynomial chaos expansion. IEEE 56th Annual Conference on Decision and Control (CDC) p. 4490 (2017) doi:10.1109/CDC.2017.8264321
Subtopic 2.3: Smart Areas and Research Platforms
- E.E. Ferg, F. Schuldt, J. Schmidt, The challenges of a Li-ion starter lighting and ignition battery: A review from cradle to grave; J. Power Sources 423, 380 (2019) doi:/10.1016/j.jpowsour.2019.03.063.
- B. Hanke, D. Peters, M. Kühnel, et int., K. von Maydell, C. Agert, Reducing the Grid Load of South African Office Building by Implementation of Energy Efficiency Measures and Installation of Demand Optimized PV; Proc. of 32nd European Photovoltaic Solar Energy Conference and Exhibition (2017) doi:10.4229/EUPVSEC20172017-6EO.2.6
- P. Remmen, M. Lauster, et int., T. Osterhage, D. Müller, TEASER: an open tool for urban energy modelling of building stocks, J. Build. Perform. Simu. 11, 84(2018) doi:10.1080/19401493.2017.1283539
- F. Bünning, R. Sangi, D. Müller, A Modelica library for the agent-based control of building energy systems, Appl. Energ. 193, 52(2017) doi:10.1016/j.apenergy.2017.01.053
- D. Calì, P Matthes, K. Huchtemann, R. Streblow, D. Müller, CO2 based occupancy detection algorithm: Experimental analysis and validation for office and residential buildings, Build. Environ. 86, 39(2015) doi:10.1016/j.buildenv.2014.12.011
- R. Sangi, A. Kümpel, D. Müller, Real-life implementation of a linear model predictive control in a building energy system, J. Build. Eng. 22, 451 (2019) doi:10.1016/j.jobe.2019.01.002
- Y. Liu, F. Schreiner, M. Lao, M. Noe, M. Doppelbauer, Design of a superconducting DC demonstrator for wind generators, IEEE T. Energy Conver. 33, 1955 (2018) doi:10.1109/TEC.2018.2846721
- D. Kottonau, E. Shabagin, M. Noe, S. Grohmann, Opportunities for High-Voltage AC Superconducting Cables as Part of New Long-Distance Transmission Lines, IEEE Trans. Applied Superconductivity 27, (2017) doi:10.1109/TASC.2017.2652856
- N. Ludwig, S. Waczowicz, C. Düpmeier, R. Mikut, V. Hagenmeyer, et al., Concept and benchmark results for Big Data energy forecasting based on Apache Spark, J. Big Data 5, e11 (2018) doi:10.1186/s40537-018-0119-6
- H. Maaß, H. Cakmak, R. Mikut,W. Süß, K. Stucky, U. Kühnapfel, V. Hagenmeyer, et al., Data processing of high-rate low-voltage distribution grid recordings for smart grid monitoring and analysis, EURASIP J. Adv. Sig. Pr. 14, (2015) doi:10.1186/s13634-015-0203-4
- D. Bernet, M. Hiller: Grid-Connected Voltage Source Converters with integrated Multilevel-Based Active Filters, IEEE Ener. Conv., (2018) doi:10.1109/ECCE.2018.8557648
- V. Hagenmeyeret al.: Information and communication technology in Energy Lab 2.0: Smart energies system simulation and control center with an open-street-map-based power flow simulation example, Energy Technology 4, 145 (2016) doi:10.1002/ente.201500304