Fusion - The Route to a Fusion Power Plant

The ultimate goal of the Helmholtz FUSION Program is to lay the foundations for the realization of fusion power plants. While the ITER requirements drive a major part of the program, it is also important to understand the additional requirements that will arise for an electricity-producing fusion power plant. It is hence the goal of this Cross-cutting Activity to understand these requirements, review the progress in the individual areas and direct the program such that the highest priority R&D items are addressed.

  1. K. A. Avramidis, G. Aiello, S. Alberti, P. T. Brücker, A. Bruschi, et al., Overview of recent gyrotron R&D towards DEMO within EUROfusion Work Package Heating and Current Drive, Nucl. Fusion 59, 066014 (2019) doi:10.1088/1741-4326/ab12f9
  2. C. Bachmann, F. Arbeiter, L. V. Boccaccini, M. Coleman, G. Federici,et al.,Issues and strategies for DEMO in-vessel component integration, Fusion Eng. Des. 112, 527 (2016) doi:10.1016/j.fusengdes.2016.05.040
  3. W. Biel, M. de Baar, A. Dinklage, F. Felici, R. König, et al., DEMO diagnostics and burn control, Fusion Eng. Des. 96-97, 8 (2015) doi:10.1016/j.fusengdes.2015.01.046
  4. W. Biel, M. Beckers, R. Kemp, R. Wenninger, H. Zohm, Systems code studies on the optimization of design parameters for a pulsed DEMO tokamak reactor, Fusion Eng. Des. 123, 206 (2017) doi:10.1016/j.fusengdes.2017.01.009
  5. L. V. Boccaccini, G. Aiello, J. Aubert, C. Bachmann, T. Barrett, et al., Objectives and status of EUROfusion DEMO blanket studies, Fusion Eng. Des.109–111, 1199 (2016), doi:10.1016/j.fusengdes.2015.12.054
  6. Chr. Day, B. Butler, T. Giegerich, P. T. Lang, R. Lawless, et al., Consequences of the technology survey and gap analysis on the EU DEMO R&D programme in tritium, matter injection and vacuum, Fusion Eng. Des. 109-111, 299 (2016) doi:10.1016/j.fusengdes.2016.03.008
  7. E. Fable, C. Angioni, M.Siccinio, H. Zohm, Plasma physics for fusion reactor system codes: Framework and model code, Fus. Eng. Des. 130, 131 (2018) doi:10.1016/j.fusengdes.2018.03.061
  8. U. Fischer, C. Bachmann, J.-C. Jaboulay, F. Moro, I. Palermo, et al., Neutronic performance issues of the breeding blanket options for the European DEMO fusion power, Fusion Eng. Des. 109-111, 1458 (2016) doi:10.1016/j.fusengdes.2015.11.051
  9. R. Heller, P. V. Gade, W. H. Fietz, T. Vogel, K.-P. Weiss, Conceptual Design Improvement of a Toroidal Field Coil for EU DEMO Using High-Temperature Superconductors, IEEE T. Appl. Supercon. 26, 4201105 (2016), doi:10.1109/TASC.2016.2520662
  10. X. Jin, D. Carloni, L. V. Boccaccini, R. Stieglitz, T. Pinna, et al., Preliminary safety studies for the DEMO HCPB blanket concept, Fusion Eng. Des. 98–99, 2157 (2015) doi:10.1016/j.fusengdes.2015.01.029
  11. G. Pintsuk, E. Diegele, S. L. Dudarev, M. Gorley, J. Henry, et al., European materials development: Results and perspective, Fusion Eng. Des. (2019) (in press) doi:10.1016/j.fusengdes.2019.02.063
  12. M. Siccinio, E. Fable, C. Angioni,S. Saarelma, A. Scarabosio, et al.,Impact of an integrated core/SOL description on the R and BT optimization of tokamak fusion reactors. Nucl. Fusion 58, 016032 (2018) doi:10.1088/1741-4326/aa9583
  13. F. Warmer, C. D. Beidler, A. Dinklage, R. C. Wolf, From W7-X to a HELIAS fusion power plant: motivation and options for an intermediate-step burning-plasma stellarator, Plasma Phys. Contr. F. 58, 074006 (2016) doi:10.1088/0741-3335/58/7/074006
  14. J. H. You, G. Mazzone, E. Visca, Ch. Bachmann, E. Autissier, et al., Conceptual design studies for the European DEMO divertor: Rationale and first results, Fusion Eng. Des. 109, 1598 (2016) doi:10.1016/j.fusengdes.2015.11.012
  15. H. Zohm, F. Träuble, W. Biel, E. Fable, R. Kemp, et al., A stepladder approach to a tokamak fusion power plant, Nucl. Fusion 57, 86002 (2017) doi:10.1088/1741-4326/aa739e
Druck-Version