Fusion - Plasma Theory Challenges

Theoretical and computational plasma physics play a crucial role in fusion energy research. They are used to help prepare and interpret experiments on current tokamaks and stellarators. In addition, extrapolations to future devices such as JT-60SA, ITER, and DEMO very much depend on theoretical insight and advanced numerical simulations. The latter increasingly rely on large codes and supercomputing, but analytical theory is also necessary both for the basic understanding of various complex phenomena and for making sure that the numerical tools are set up properly.

  1. A. Biancalani, A. Bottino, M. Cole, C. Di Troia, Ph. Lauber, et al., Nonlinear interplay of Alfvén instabilities and energetic particles in tokamaks, Plasma Phys. Contr. F. 59, 054004 (2017) doi:10.1088/1361-6587/aa61e4
  2. A. Bustos, A. B. Navarro, T. Görler, F. Jenko, C. Hidalgo, Microturbulence study of the isotope effect, Phys. Plasmas 22, 012305 (2015) doi:10.1063/1.4905637
  3. T. Görler,A. E. White, D. Told, D., F. Jenko,C. Holland, et al., A flux-matched gyrokinetic analysis of DIII-D L-mode turbulence. Phys. Plasmas 21, 122307 (2014) doi:10.1063/1.4904301
  4. P. Helander, Theory of plasma confinement in non-axisymmetric magnetic fields, Rep. Prog. Phys. 77, 087001 (2014) https://doi.org/10.1088/0034-4885/77/8/087001
  5. P. Helander, S. L. Newton, A. Mollén and H. M. Smith, Impurity transport in a mixed-collisionality stellarator plasma, Phys. Rev. Lett. 118, 155002 (2017) doi:10.1103/PhysRevLett.118.155002
  6. G. G. Plunk, P. Xanthopoulos, G. M. Weir, S. A. Bozhenkov, A. Dinklage, et al., Stellarators Resist Turbulent Transport on the Electron Larmor Scale, Phys. Rev. Lett. 122, 035002 (2019) doi:10.1103/PhysRevLett.122.035002
  7. D. Reiser, T. Eich, Drift-based scrape-off particle width in X-point geometry, Nucl. Fusion 57, 046011 (2017) doi:10.1088/1741-4326/aa5ab7
  8. J. Romazanov, D. Borodin, A. Kirschner, S. Brezinsek, S. Silburn, et al., First ERO2.0 modeling of Be erosion and non-local transport in JET ITER-like wall, Phys. Scripta T170, 014018 (2017) doi:10.1088/1402-4896/aa89ca
  9. A. Stegmeir, D. Coster, A. Ross, O. Maj, K. Lackner, et al., GRILLIX: a 3D turbulence code based on the flux-coordinate independent approach, Plasma Phys. Contr. F. 60, 035005 (2018) doi:10.1088/1361-6587/aaa373
  10. M. Weiland, R. Bilato, R. Dux, B. Geiger, A. Lebschy, et al., RABBIT: Real-time simulation of the NBI fast-ion distribution, Nucl. Fusion 58, 082032 (2018) doi:10.1088/1741-4326/aabf0f
  11. S. Wiesen, D. Reiter, V. Kotov, M. Baelmans, W. Dekeyser, et al., The new SOLPS-ITER code package, J. Nucl. Materials 463, 480 (2015) doi:10.1016/j.jnucmat.2014.10.012
  12. P. Xanthopoulos, G. G. Plunk, A. Zocco, P. Helander, Intrinsic turbulence stabilization in a stellarator, Phys. Rev. X 6, 021033 (2016) doi:10.1103/PhysRevX.6.021033
Druck-Version