Energy System Transformation

Topic 1 - “Energy System Transformation” addresses the sociotechnical design and integrated assessment of sustainable future energy systems embedded in their full technical, economic, environmental, societal and political contexts. For this purpose, Topic 1 will develop quantitative and qualitative transformation scenarios as a basis for discussion and decision-making by policymakers in societal real-world labs aimed at demonstrating societal feasibility, while ensuring technical effectiveness. The quantitative assessment of transformation pathways for energy systems will be based on technoeconomic simulation and optimization models with a temporal resolution and timeframe ranging from sub-hourly to decades, where model parameters will be iteratively refined based on insights gained in societal real-world laboratories.

Subtopic 1.1: Effective System Transformation Pathways

  1. A. Alhamwi, W. Medjroubi,T. Vogt, C. Agert, GIS-based urban energy systems models and tools: Introducing a model for the optimisation of flexibilisation technologies in urban areas, Appl. Energ. 191, 1 (2017) doi:10.1016/j.apenergy.2017.01.048
  2. M. Deissenroth, M. Klein, K. Nienhaus, M. Reeg: Assessing the Plurality of Actors and PolicyInteractions - Agent-based Modelling of Renewable Energy Market Integration, Complexity, Special Issue: Energy & Complexity, (2017) doi:10.1155/2017/7494313
  3. H.-C. Gils, Y. Scholz, T. Pregger, D.L. de Tena, Integrated modelling of variable renewable energy-based power supply in Europe, Energy 123, 173 (2017) doi:10.1016/j.energy.2017.01.115
  4. P.-M. Heuser, D.S. Ryberg, T. Grube, M. Robinius, D. Stolten, Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen, Int. J. Hydrogen Energ. 44, 12733 (2019) doi:10.1016/j.ijhydene.2018.12.156
  5. L. Kotzur,P. Markewitz, M. Robinius, D. Stolten, Time series aggregation for energy system design: Modeling seasonal storage, Appl. Energ. 213, 123 (2018) doi:10.1016/j.apenergy.2018.01.023
  6. P. Lopion,P. Markewitz, M. Robinius, D. Stolten, A review of current challenges and trends in energy systems modeling, Renew. Sust. Energ. Rev. 96, 156 (2018) doi:10.1016/j.rser.2018.07.045
  7. D. Luca de Tena, T. Pregger, Impact of electric vehicles on a future renewable energy‐based power system in Europe with a focus on Germany, Int. J. Energ. Res. 42, 2670 (2018) doi:10.1002/er.4056
  8. W. Medjroubi, U. P. Müller, M. Scharf, C. Matke, D. Kleinhans, Open data in power grid modelling: new approaches towards transparent grid models, Energy Reports 3, 14 (2017) doi:10.1016/j.egyr.2016.12.001
  9. S. P. Melo, U. Brand,T. Vogt, F. Schuldt, K. von Maydell, et al., Primary Frequency Control Provided by Hybrid Battery Storage and Power-to-Heat System, Appl. Energ. 233-234, 220 (2019) doi:10.1016/j.apenergy.2018.09.177
  10. I. M. Müller, M. Reich, F. Warmer, H. Zohm, S. Günter, et al., Analysis of technical and economic parameters of fusion power plants in future power systems, Fusion Eng. Des., (2019) doi:10.1016/j.fusengdes.2019.03.043
  11. M. Robinius, A. Otto, P. Heuser,P. Markewitz, D. Stolten, et al., Linking the Power and Transport Sectors-Part 1: The Principle of Sector Coupling, Energies 10, 956 (2017) doi:10.3390/en10070956
  12. M. Reuß, J. Reul, T. Grube,  M. Robinius, D. Stolten, et al., Solar hydrogen production: a bottom-up analysis of different photovoltaic–electrolysis pathways, Sustainable Energy & Fuels 3, 801 (2019) doi:10.1039/C9SE00007K
  13. M. Reuß, T. Grube,M. Robinius, P. Preuster, D. Stolten, Seasonal storage and alternative carriers: A flexible hydrogen supply chain model, Appl. Energ. 200, 290 (2017) doi:10.1016/j.apenergy.2017.05.050
  14. S. M. Saba, M. Müller, M. Robinius, D. Stolten, The investment costs of electrolysis – A comparison of cost studies from the past 30 years, Int. J. Hydrogen Energ. 43, 1209 (2018) doi:10.1016/j.ijhydene.2017.11.115
  15. B. Schäfer, C. Beck, K. Aihara, D. Witthaut, M. Timme, Non-Gaussian power grid frequency fluctuations characterized by Levy-stable laws and superstatistics, Nature Energy 3, 119 (2018) doi:10.1038/s41560-017-0058-z

 

Subtopic 1.2: Societally-Feasible Transformation Pathways

  1. C. Rösch, K.-R. Bräutigam, J. Kopfmüller, V. Stelzer, A. Fricke,Sustainability assessment of the German energy transition, Energ. Sustain. and Soc.8, 12(2018) doi:10.1186/s13705-018-0153-4
  2. C. Rösch, C.; M. Roßmann, S. Weickert,Microalgae for integrated food and fuel production, GCB Bioenergy 11, 326 (2018), doi: 10.1111/gcbb.12579
  3. M. Haase, C. Rösch, D. Ketzer,GIS-based assessment of sustainable crop residue potentials in European regions,Biomass & Bioenergy 86, 156 (2016) doi:10.1016/j.biombioe.2016.01.020
  4. N. Mahbub, A.O. Oyedun, H. Zhang, A. Kumar, W.R. Poganietz, A Lifecycle sustainability assessment (LCSA) of oxymethylene ether as a diesel additive produced from forest biomass, Int. J. LCA 28, (2018) doi: 10.1007/s11367-018-1529-6
  5. R. Hillerbrand, C. Reitinger, M. Dumke, M. Barosevcic,A conceptual framework for impact assessment within SLCA, Int. J. Life Cycle Assess. 16, 380 (2011) doi: 10.1007/s11367-011-0265-y
  6. S. Nayono, A. Lehmann, J. Kopfmüller, H. Lehn, Improving sustainability by technology assessment and systems analysis: the case of IWRM Indonesia, Appl. Water Sci. 6, 279 (2016) doi: 0.1007/s13201-016-0427-y
  7. K. Daedlow, A. Podhora, M. Winkelmann, J.Kopfmüller, R. Walz, K. Helming, Socially responsible research processes for sustainability transformation: An integrated assessment framework, Current Opinion in Environmental Sustainability 23, 1 (2016) doi: 10.1016/j.cosust.2016.09.004
  8. O.Parodi, R. Beecroft, M. Albiez,A. Quint, A. Seebacher, et al.,The ABC of real-world lab methodology - From "action research" to "participation" and beyond, TRIALOG 126/127, 74 (2016)
  9. S. Vögele, P. Hansen, W.R. Poganietz, S. Prehofer, W. Weimer-Jehle, Building scenarios on energy consumption of private households in Germany using a multi-level Cross-Impact Balance approach, Energy 120, 937 (2017) doi: 10.1016/j.energy.2016.12.001
  10. A. Grunwald, Diverging pathways to overcoming the environmental crisis: A critique of eco-modernism from a technology assessment perspective.J. Clean. Prod. 197, 1854 (2018) doi:10.1016/j.jclepro.2016.07.212
  11. A. Grunwald, A transdisciplinary approach to the process of socio-technical transformation: the case of German Energiewende. In: M. Padmanabhan (ed.): Transdisciplinary Research and Sustainability. Collaboration, Innovation and Transformation. New York: Routledge 2017, 53 doi:10.4324/9781315441481
  12. S. Venghaus, J. Hoffmann, The impacts of energy from biomass on the perceived quality of life of the rural population in Brandenburg, Germany, Innovation 29, 337 (2016) doi:10.1080/13511610.2016.1192991
  13. J. Geske, D. Schumann, Willing to participate in vehicle-to-grid (V2G)? Why not! Energ. Policy 120, 392 (2018) doi:10.1016/j.enpol.2018.05.004
  14. H. Schlör, S. Venghaus, P. Zapp, J. Marx, A. Schreiber, F.-F. Hake, The energy-mineral-society nexus – A social LCA model, Appl. Energ. 228, 999 (2018) doi:10.1016/j.apenergy.2018.06.048
  15. C. Märker, S. Venghaus, J.-F. Hake, Integrated governance for the food–energy–water nexus – The scope of action for institutional change, Renew. Sust. Energ. Rev. 97, 290 (2018) doi:10.1016/j.rser.2018.08.020.

 

Subtopic 1.3: Helmholtz Energy Transition Roadmap

  1. W. Fischer, J.-F. Hake, W. Kuckshinrichs, T. Schröder, S. Venghaus, German energy policy and the way to sustainability: Five controversial issues in the debate on the "Energiewende", Energy 115, 1580 (2016) doi:10.1016/j.energy.2016.05.069
  2. B. Jesse, H. Heinrichs, W. Kuckshinrichs, Adapting the theory of resilience to energy systems: A review and outlook, Energ., Sustain. Soc., (2019)
  3. S. Vögele, P. Kunz, D. Rübbelke, T. Stahlke, Transformation pathways of phasing out coal-fired power plants in Germany, Energ. Sustain. Soc. 8, (2018) doi:10.1186/s13705-018-0166-z
  4. S. Vögele, D. Rübbelke, P. Mayer, W. Kuckshinrichs, Germany's "No" to carbon capture and storage: Just a question of lacking acceptance?, Appl. Energ. 214, 205 (2018) doi:10.1016/j.apenergy.2018.01.077
  5. A. Ernst, K. Biss, H. Shamon, H. Heinrichs, D. Schumann, Benefits and challenges of participatory methods in qualitative energy scenario development, Technol. Forecast. Soc. 127, 245 (2018) doi:10-1016/j.techfore.2017.09.026
  6. A. Ernst, A. Fischer-Hotzel, D. Schumann, Transforming knowledge for sustainability: Insights from an inclusive science-practice dialogue on low-carbon society in Germany, Energy Res. Soc. Sci. 29, 23 (2017) doi:10.1016/j.erss.2017.04.006
  7. D. Scheer, K. Konrad, S. Wassermann, The good, the bad, and the ambivalent: A qualitative study of public perceptions towards energy technologies and portfolios in Germany, Energ. Policy. 100, 89 (2017) doi:10.1016/j.enpol.2016.09.061
  8. H.-J. Appelrath, C. Dieckhoff, M. Fischedick, A. Grunwald, F. Höffler, et al., Consulting with energy scenarios: Requirements for scientific policy advice, (2016) ISBN:978-3-8047-3550-7
  9. A. Grunwald, The Spreading of techno-visionary futures. In: A. Bunde, J. Caro, J. Kärger, G. Vogl, Diffusive Spreading in Nature, Technology and Society, Springer, 295 (2018) doi:10.1007/978-3-319-67798-9_15
  10. W. Weimer-Jehle, J. Buchgeister, W. Hauser, W. R. Poganietz, T. Pregger, Context scenarios and the construction of socio-technical energy scenarios, Energy 111, 956 (2016) doi:10.1016/j.energy.2016.05.073
  11. S. M. Saba, M. Müller, M. Robinius, D. Stolten, The investment costs of electrolysis – A comparison of cost studies from the past 30 years, Int. J. Hydrogen Energ. 43, 1209 (2018) doi:10.1016/j.ijhydene.2017.11.115
  12. S. Weitemeyer, D. Kleinhans, T. Vogt, C. Agert, Integration of renewable energy sources in future power systems: The role of storage, Renew. Energ. 75, 14 (2015) doi:10.1016/j.renene.2014.09.028
  13. H.-C. Gils, Economic potential for future demand response in Germany - modelling approach and case study, Appl. Energ. 162, 401 (2015), doi:10.1016/j.apenergy.2015.10.083
  14. S. Teske, T. Pregger, S. Simon, T. Naegler, High renewable energy penetration scenarios and their implications for urban energy and transport systems, Curr. Opin. Env. Sust. 30, 89 (2018) doi:0.1016/j.cosust.2018.04.007
  15. S. Wassermann, M. Reeg, K. Nienhaus, Current challenges of Germany’s energy transition project and competing strategies of challengers and incumbents: The case of direct marketing of electricity from renewable energy sources, Energ. Policy 76, 66 (2015) doi:10.1016/j.enpol.2014.10.013
Druck-Version