Direkt zum Seiteninhalt springen

Subtopic 2.1: Fundamentals & Materials

A. Sarkar,  L. Velasco, D. Wang, Q. Wang, G. Talasila, et al.,High Entropy Oxides for Reversible Energy Storage. Nat. commun. 9, 3400 (2018) doi:10.1038/s41467-018-05774-5

Z. Li, X. Mu, Zh. Zhao-Karger, T. Diemant, R.J. Behm, et al., Fast multivalent intercalation enabled by solvated Mg2+ ions into self-established metallic layered materials, Nat. commun. 9, 5115 (2018), doi:10.1038/s41467-018-0748-4

Q. Ma, et int., C.L. Tsai, F. Tietz, O. Guillon, Scandium-substituted Na3Zr2(SiO4)2(PO4) Prepared by a Solution-Assisted Solid-State Reaction Method as Sodium-Ion Conductors,Chem. Mater. 2813, 4821 (2016), doi:10.1021/acs.chemmater.6b02059

Z. Zhao-Karger, R. Liu, W. Dai, Z. Li, T. Diemant, B. P. Vinayan, et al., Towards Highly Reversible Magnesium-sulfur Batteries with Efficient and Practical Mg[B(hfip)4]2 Electrolyte, ACS Energy Letters 3, 2005 (2018) doi:10.1021/acsenergylett.8b01061

J. Steiger, G. Richter, M. Wenk, D. Kramer, R. Mönig, Comparison of the growth of lithium filaments and dendrites under different conditions, Electrochem. commun. 50, 11 (2015) doi:10.1016/j.elecom.2014.11.002

Q. Wang, A. Sarkar, D. Wang, L. Velasco, R. Azmi, et al., Multi-Anionic and -Cationic Compounds: New High Entropy Materials for Advanced Li-Ion Batteries. Energy Environ. Sci., Advance Article (2019) doi:10.1039/C9EE00368A

M. Klinsmann, D. Rosato, M. Kamlah, R. M. McMeeking, Modeling Crack Growth during Li Extraction in Storage Particles Using a Fracture Phase Field Approach., J. Electrochem. Soc. 163, A102 (2016) doi:10.1149/2.0281602jes

X. Gao, A. Mariani, S. Jeong, X. Liu, X. Dou, M Ding, A. Moretti, S. Passerini, Prototype rechargeable magnesium batteries using ionic liquid electrolytes J. Power Sources (2019) doi:10.1016/j.jpowsour.2019.03.049

I. Mohammad, R. Witter, M. Fichtner, M.A. Reddy, Room-Temperature, Rechargeable Solid-State Fluoride-Ion Batteries ACS Appl. Energy Mater. 1, 4766 (2018) doi:10.1021/acsaem.8b00864

J. Wandt, P. Jakes, J. Granwehr, R.-A. Eichel et al., Quantitative and Time Resolved Detection of Lithium Plating and Reintercalation on Graphite Anodes in Lithium Ion Batteries, Mat. Today 21, 231 (2018) 231 doi:10.1016/j.mattod.2017.11.001

A. Niemöller, P. Jakes, R.-A. Eichel, J. Granwehr, EPR Imaging of Metallic Lithium and its Application to Dendrite Localisation in Battery Separators, Sci. Rep. 8, 14331 (2018) doi:10.1038/s41598-018-32112-y

S. Mei, C. J. Jafta, I. Lauermann, Q. Ran, M. Kärgell, et al., Porous Ti4O7 Particles with Interconnected-Pores Structure as High-Efficiency Polysulfide Mediator for Lithium-Sulfur Batteries, Adv. Funct. Mater. 27, 1701176 (2017) doi:10.1002/adfm.201701176

Y. Yang, S. Risse, S. Mei, C. J. Jafta, Y. Lu, et al., Binder-Free Carbon Monolith Cathode Material for Operando Investigation of High Performance Lithium-Sulfur Batteries with X-Ray Radiography, Energy Storage Materials 9, 96 (2017) doi:10.1016/j.ensm.2017.06.008

F. Sun, M. Osenberg, K. Dong, D. Zhou, A. Hilger, et al., Correlating Morphological Evolution of Li Electrodes with Degrading Electrochemical Performance of Li/LiCoO2 and Li/S Battery Systems: Investigated by Synchrotron X‑ray Phase Contrast Tomography, ACS Energy Lett. 3, 256 (2018) doi:10.1021/acsenergylett.7b01254

R. Schmuch, R. Wagner., G. Hoerpel., T. Placke, M. Winter, Performance and cost of materials for lithium-based rechargeable automotive batteries, Nat. Energy 4, 267 (2018) doi:10.1038/s41560-018-0107-2

S. Nowak, M. Winter, The Role of Cations on the Performance of Lithium Ion Batteries: A Quantitative Analytical Approach, ‎Acc. Chem. Res. 51, 265 (2018) doi:10.1021/acs.accounts.7b00523

P. Meister, H. Jia, J. Li, R. Kloepsch, M. Winter, et al., Best Practice: Performance and Cost Evaluation of Lithium Ion Battery Active Materials with Special Emphasis on Energy Efficiency, Chem. Mater. 28, 7203 (2016) doi:10.1021/acs.chemmater.6b02895

K. Borzutzki, J. Thienenkamp, M. Diehl, M. Winter, G. Brunklaus, Fluorinated polysulfonamide based single ion conducting room temperature applicable gel-type polymer electrolytes for lithium ion batteries, J. Mater. Chem. A7, 188 (2019) doi:10.1039/c8ta08391f

C.-L. Tsai, V. Roddatis, M. Bram, P. Heitjans, O. Guillon, Li7La3Zr2O12 Interface Modification for Li Dendrite Prevention, ACS Appl. Mater. Interfaces 8, 10617 (2016) doi:10.1021/acsami.6b00831

F. Zoller, K. Peters, P. M. Zehetmaier, P. Zeller, et int., D. FattakhovaRohlfing, Making Ultrafast High‐Capacity Anodes for Lithium‐Ion Batteries via Antimony Doping of Nanosized Tin Oxide/Graphene Composites., Adv. Funct. Mater. (2018), doi:10.1002/adfm.201706529

Subtopic 2.2: Components & Cells

M. Müller, L. Pfaffmanna, S. Jaiser, M. Baunach,V. Trouillet, et al., Investigation of binder distribution in graphite anodes for lithium-ion batteries, J. Power Sources 340, 1 (2017) doi:10.1016/j.jpowsour.2016.11.051

W. Bauer, D. Nötzel, V. Wenzel, H. Nirschl, Influence of dry mixing and distribution of conductive additives in cathodes for lithium ion batteries, J. Power Sources 288, 359 (2015) doi:10.1016/j.jpowsour.2015.04.081

S. Yu, A. Mertens, H. Tempel, R. Schierholz, H. Kungl, R.-A. Eichel: Monolithic All-Phosphate Solid-State Lithium-Ion Battery with Improved Interfacial Compatibility, ACS Appl. Mater. Interfaces 10, 22264 (2018) doi:10.1021/acsami.8b05902

D. Wang, X. Bie, Q. Fu, D. Dixon, N. Bramnik, et al., Sodium vanadium titanium phosphate electrode for symmetric sodium-ion batteries with high power and long lifespan, Nat. commun. 8, 15888 (2017) doi:10.1038/ncomms15888

T. Ates, M. Keller, J. Kulisch, T. Adermann, S. Passerini, Development of an all-solid-state lithium battery by slurry-coating procedures using a sulfidic electrolyte, Energy Storage Materials (2019) doi:10.1016/j.ensm.2018.11.011

W. Pfleging, R. Kohler, J. Pröll, Electrolyte batteries, Patent US 9,337,462 B2 (2016)

S. Ito, U. Ulissi, Y. Aihara, A. Varzi, S. Passerini, All Solid State Secondary Battery, KR20190022310 (A); US2019067695 (A1) (2019)

K. Pfeifer, et int., C. Das, J. Maibach, H. Ehrenberg, S. Dsoke, Can Metallic Sodium Electrodes Affect the Electrochemistry of Sodium‐Ion‐Batteries? – Reactivity Issues and Perspectives, ChemSusChem (2019) doi:10.1002/cssc.201901056

O. Birkholz, Y. Gan, M. Kamlah, Modeling the effective transport properties of the solid and the pore phase in granular materials using resistor networks, Powder Technology 351, 54 (2019) doi:10.1016/j.powtec.2019.04.005

A. Hofmann, M. Migeot, E. Thisen, M. Schulz, R. Heinzmann, et al., Electrolyte Mixtures Based on Ethylene Carbonate and Dimethyl Sulfone for Li-Ion Batteries with Improved Safety Characteristics, Chem Sus Chem. 8, 1892 (2015) doi:10.1002/cssc.201500263

T. Danner, G. Zhu, A.F. Hofmann, A. Latz, Modeling of nano-structured cathodes for improved lithium-sulfur batteries, Electrochim. Acta. 184, 124 (2015). doi:10.1016/j.electacta.2015.09.143

S. Hein, A. Latz, Influence of local lithium metal deposition in 3D microstructures on local and global behavior of Lithium-ion batteries, Electrochim. Acta 201, 342 (2016) doi:10.1016/j.electacta.2016.01.220

V. Galindo, G. Gerbeth, F. Stefani, N. Weber, T. Weier, Energiespeicheranordnung, deren Verwendung und Energiespeicherzellenanordnung, Patent DE 10 2013 112 555 B3 (2014)

D. H. Kelley, T. Weier, Fluid Mechanics of Liquid Metal Batteries, Appl. Mech. Rev. 70, 020801 (2018) doi:10.1115/1.4038699

M. Finsterbusch, T. Danner, C.L. Tsai, S. Uhlenbruck, A. Latz, O. Guillon, High Capacity Garnet-Based All-Solid-State Lithium Batteries: Fabrication and 3D-Microstructure Resolved Modeling, ACS Appl. Mater. Interfaces 10, 22329 (2018) doi:10.1021/acsami.8b06705

S. Lobe, C. Dellen, et int., C.L. Tsai, S. Uhlenbruck, O. Guillon, Radio frequency magnetron sputtering of Li7La3Zr2O12 thin films for solid-state batteries, J. Power Sources 307, 684 (2016), doi:10.1016/j.jpowsour.2015.12.054

Subtopic 2.3: Batteries in Application

J. Zhu, M. Knapp, M. S. D. Darma, Q. Fang, X. Wang, et al., An improved electro-thermal battery model complemented by current dependent parameters for vehicular low temperature application, Applied Energy 248, 149 (2019) doi:10.1016/j.apenergy.2019.04.066

A. Schmidt, A. Smith, H. Ehrenberg, Power capability and cyclic aging of commercial, high power lithium ion battery cells with respect to different cell designs, J. Power Sources 425, 27 (2019) doi:10.1016/j.jpowsour.2019.03.075

A. Senyshyn, M. J. Mühlbauer, O. Dolotko, M. Hofmann, H. Ehrenberg, Homogeneity of lithium distribution in cylinder-type Li-ion batteries, Sci. Rep. 5, 18380(2015)doi:10.1038/srep18380

C. Vaalma, D. Buchholz, M. Weil, S. Passerini, A cost and resource analysis of sodium-ion batteries, Nat. Rev. Mater. (2018) doi:10.1038/natrevmats.2018.13

G. Merei, J. Moshövel, D. Magnor, D. U. Sauer, Optimization of self-consumption and techno-economic analysis of PV-battery systems in commercial applications, Appl. Energy 168, 171 (2016) doi:10.1016/j.apenergy.2016.01.083

J. Moshövel, K.-P. Kairies, D. Magnor, M. Leuthold, M. Bost, et al., Analysis of the maximal possible grid relief from PV-peak-power impacts by using storage systems for increased self-consumption, Appl. Energy 137, 567 (2015) doi:10.1016/j.apenergy.2014.07.021

EP2255434B1, M. Hiller, Method for Controlling a Multi-Phase Power Converter having distributed Energy Accumulator at low output frequencies, European Patent

D. Bernet, M. Hiller: Grid-Connected Voltage Source Converters with integrated Multilevel-Based Active Filters, 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 2018 DOI: 10.1109/ECCE.2018.8557648

P. Himmelmann, M. Hiller, D. Krug, M. Beuermann: A new Modular Multilevel Converter for Medium Voltage High Power Oil & Gas Motor Drive Applications. EPE'16 ECCE Europe, Karlsruhe, Germany, 2016 DOI: 10.1109/EPE.2016.7695692