Doctoral Award
Recognition for creative excellence: Every year, we award prizes for the best and most original doctoral theses in our six Research Fields.
In this way, we provide targeted support for young scientists and attract talented individuals to research in the long term.
The award winners receive a one-time prize of 5,000 euros. In addition, we support stays abroad with a travel and material cost allowance of 2,000 euros per month. This sum is granted for a period of up to six months.
Nominations are made by the Executive Boards of the Helmholtz Centers.
Prize Winners 2024
-
Our understanding of the interaction between the immune system and brain tumors remains insufficient to fully harness the potential of immunotherapy. Despite numerous approaches, the most aggressive brain tumor – glioblastoma – remains incurable to this day. As part of her translational doctoral research, Celia Dobersalske, together with her colleagues, initially characterized immune stem and progenitor cells within tumor tissue, leading up to the discovery of tumor-reactive, cytotoxic CD8+ T lymphocytes in the skull bone. These cells may play a critical role in the body’s defense against cancer. Innovative imaging studies in patients, correlated with disease progression, provided initial indications of the therapeutic potential of this discovery. Future research will explore how these unique cells can be specifically leveraged to improve treatment strategies.
“Realizing that we had discovered something completely new was an unforgettable moment. Our finding that the human skull bone harbors a previously overlooked immune reservoir next to brain tumors added a crucial piece to the evolving understanding of the brain, which was long considered immunologically isolated. That moment marked a pivotal turning point for me.”
-
In her thesis, Clara Vázquez García developed a new technology called SWIBRID – short for SWItch-joint Breakpoint Repertoire IDentification. This method analyzes small DNA scars, that naturally occur during the production of antibodies. At first, SWIBRID was used to study how fragments of DNA get inserted into antibody genes in both humans and mice. But the project soon shifted toward a translational focus: using SWIBRID to identify immune and DNA repair deficiencies in individuals. Using SWIBRID, Clara Vázquez García was able to detect DNA repair defects in immune cells from mice with over 90% accuracy. Today, her method can detect human immune defects with 99% accuracy, and she continues to advance this work. SWIBRID is highly versatile, as the immune and DNA repair systems are central regulators across various body systems. This makes the technology a strong candidate for contributing to the future of personalized medicine.
“The moment I saw in a plot we could distinguish between DNA repair defects and healthy controls, I realized the potential of SWIBRID, the technology I developed. At that moment, I knew it needed to reach the clinic so that people could benefit from it. Since then, we’ve been focused on identifying the most clinically relevant applications to the technology.”
-
Lars Grundhöfer has made significant contributions to the development of alternative navigation systems, particularly for the terrestrial R-Mode systems. R-Mode, short for “Ranging Mode,” is a ground-based alternative navigation system for maritime applications that leverages existing maritime radio infrastructure. It uses medium-wave transmitters to calculate distances between the station and the vessels and thus determine their position – especially as a backup in case of failures in global satellite navigation systems like GPS. Lars Grundhöfer significantly advanced the development of the R-Mode system. Among other things, he developed theoretical foundations for coverage estimation and signal design. He also created a software-defined radio receiver capable of receiving R-Mode signals and obtained the first positon in the open sea.
“When we determined the position on a ship in the middle of the Baltic Sea, I realized that my approach and implementation worked, and that we could navigate without GNSS*.”
*GNSS stands for Global Navigation Satellite System, an umbrella term for all satellite navigation systems that enable global positioning and navigation.
-
How can we develop biotechnological processes faster, more precisely, and more sustainably? This was the central question driving Laura Helleckes throughout her doctoral research. At Forschungszentrum Jülich, she explored how laboratory automation and machine learning can work hand in hand to make biotechnological processes, such as those used to produce enzymes or other proteins, more efficient. By integrating automated laboratories, statistical models, and custom-built software, she not only accelerated experiments but also made them more targeted and strategic. This approach saves time and resources while opening new paths toward a sustainable bioeconomy. Her research brings us one step closer to self-driving bioprocesses – systems that operate intelligently, autonomously, and guided by data.
“In my PhD, I discovered that my training in biotechnology and my work in machine learning allow me to connect two disciplines that rarely speak the same language. This interdisciplinary connection, bringing biotechnology and machine learning closer together, has been my passion ever since.”
-
A deep understanding of microbial processes is crucial for a comprehensive safety analysis for the long-term storage of radioactive waste. The aim of Stephan Hilpmann’s doctoral thesis was to investigate the interactions of the anaerobic, sulfate-reducing bacterium Desulfosporosinus hippei DSM 8344ᵀ with uranium and europium. This bacterial genus has been detected in various environments considered as potential final repository sites. D. hippei DSM 8344ᵀ is capable of immobilizing uranium(VI), which can contribute to the retention of uranium in the near-field environment of a repository. Stephan Hilpmann was the first to identify uranium(V) as an intermediate product of microbial reduction, using synchrotron-based X-ray spectroscopy. His experiments enhance our understanding of biogeochemical processes in complex environmental systems and support the development of improved safety concepts for future radioactive waste repositories.
“Initially, I wanted to detect the formation of uranium(IV) in the system using relatively simple UV-Vis methods. However, I kept seeing signals that I couldn't identify. It wasn't until I switched to synchrotron spectroscopy that I realized the process and formation of uranium(V) were present, but invisible to conventional methods. Sometimes science just needs the right ‘glasses.’”
-
With increasing demand for a more sustainable, circular economy, direct recycling offers promising ways to reuse materials without breaking them down through complex chemical processes. In her thesis Monica Keszler focuses on using a specialized sintering technique, known as field assisted sintering technology/spark plasma sintering (FAST/SPS), to directly recycle two distinct material waste streams: hot-deformed Nd-Fe-B magnets and high-speed steel swarf. Nd-Fe-B magnets are key components in wind turbines, e-mobility devices, and consumer electronics. High-speed steel often contains critical elements, such as chromium and tungsten. However, direct recycling methods have not been fully developed for these waste streams due to their specialized microstructure or contaminants. Using FAST/SPS, Monica Keszler successfully created new magnets entirely from Nd-Fe-B scrap with strong magnetic performance. The process was also adapted to turn contaminated steel shavings into new 120 mm cutting disks, showing how industrial waste can be turned back into useful products without complex reprocessing.
“Often, uneven powder and residuals would damage or break my sintering dies. However, the answer to this problem ended up being quite unusual; I ended up using barista tools and paintbrushes to make sure my powder was level and my dies were clean. Sometimes the best solutions are the most unexpected!”
-
In wake of an ever increasing complexity the desire to move towards intelligently controlling operations is amplified in manufacturing, most notably in complex semiconductor manufacturing. Here, operational excellence is the key to success. A major concern in controlling complex semiconductor wafer fabrication is the presence of time constraints that limit the transition time of products between two, mostly successive, processes. Adhering to these product specific time constraints is of utmost importance as violations result in scrapping the violating product. To overcome the industrial, manual approach, Marvin Carl May developed as a part of his doctoral thesis a novel, real-time data based approach for intelligently controlling production control for time-constrained complex job shops. He used real world data both uni-, multi-variate time series models and a digital twin to obtain violation predictions. As a second step, based on the violation probability derived from ML uncertainty, he derived the production control and successfully validated it.
“The moment I realized that industry is already performing very well in this problem, so well that there is a huge bias that renders traditonal approaches not applicable. As a result I shifted my perspective from end-to-end and big data AI to including and quantifying the uncertainty, a model based digital twin and only deriving the decision making at a later stage.”
-
For her doctoral research, Vanessa Stenvers investigated adaptations in pelagic invertebrates, both in the short-term, in response to environmental stress, and in the long-term on evolutionary timescales. Here, she focused on the effects of global warming and deep-sea mining on a pelagic jellyfish. While a growing topic of concern with mining is the effect of discharged sediment in the water column, experimental data was lacking. She found that exposure to plumes comes at high energetic costs, but also has a more severe effect than the most extreme warming scenario. In addition, she revealed that knowledge of symbiotic behaviour is crucial to understanding camouflage and visual adaptations in a group of crustaceans. This knowledge will help to predict ecosystem resilience, as pelagic communities and their interactions are likely to shift under environmental change.
“The deep ocean and its inhabitants do not exist in isolation from life on land. Pelagic animals help regulate our climate, cycle nutrients and sustain fisheries. If and how these animals adapt is a mounting concern and understanding their responses to change is critical to managing a healthy planet.”
-
Hydrogen is seen as an important building block for the energy system of the future and is also needed in large quantities as a raw material for the chemical industry. With the help of catalysts hydrogen can be produced by electrolysis of water. During her doctoral research, Hanna Trzesniowski investigated nickel-based electrocatalysts for water splitting. Under alkaline conditions, nickel–iron catalysts have emerged as a promising alternative to rare and expensive materials such as iridium for hydrogen production. A key finding of her research was her elucidation of the electronic structure of nickel-iron oxide catalysts in their catalytically active state. Additionally, she was the first to use spectroscopy to observe processes at the electrochemical interface, i.e., precisely where water splitting occurs. Overall, Hanna Trzesniowski’s work contributes to a deeper understanding of alkaline water electrolysis and paves the way for the development of more efficient and stable catalysts.
“I was sitting at the beamline in the middle of the night, slightly disappointed because at first glance, nothing seemed to be happening at the interface between the catalyst and the electrolyte. But then, a closer analysis revealed something remarkable: electrolyte ions slip between the catalyst layers. And they do so just moments before the catalyst begins its work of splitting water, almost as if the ions want to be right there when things start to get exciting.”
-
Benedikt Wagner’s doctoral thesis aims to strengthen the cryptographic foundations of practical digital signature schemes, such as those used in electronic voting systems, blockchains, and distributed systems. His work improves the security and efficiency of these methods, particularly in scenarios involving strong attackers. His work addresses the limitations of existing methods and provides new theoretical and practical tools for trustworthy digital infrastructures.
“Shortly after starting my thesis, I already had my first result, which I was very proud of. But instead of writing it up and uploading it to the ePrint server, my supervisor and I worked on many details and improved it further. After a while, however, we realized that another team had published a similar result in the meantime. From this, I learned to write down results quickly at a certain point and publish them before someone else does.”
-
In his dissertation, Tim Ziegler investigates optimization methods for laser-driven plasma acceleration of protons—a promising technology for compact, powerful particle sources. Tim Ziegler's work combines precise characterization and control of ultrashort laser pulses with innovative target concepts. The methods developed significantly improved the quality of laser-accelerated proton beams and enabled a new energy record of 150 MeV. The results mark a technological breakthrough and establish robust standards for future plasma experiments with high-intensity laser systems. The work thus makes a significant contribution to the further development of laser-based accelerators – from basic research to applications in medicine and materials science.
“We spent months trying to find the ideal combination of parameters. When the laser pulse was finally fired and our detectors showed a new energy record, there was huge cheering in the control room. At that moment, everyone realized that the concept worked better than we had hoped.”
Prize Winners 2023
-
Anna Vanderbruggen ist Ingenieurin für Mineralienverarbeitung. Nachdem sie zunächst mit natürlichen Ressourcen gearbeitet hatte, verlagerte sie ihren Schwerpunkt auf das Recycling von Lithium-Ionen-Batterien. Dies führte zur Gründung eines eigenen Forschungsprojekts, das sich vor allem mit dem Recycling von Anodengraphit befasst. Angetrieben von ihrer Leidenschaft und ihrem Engagement in diesem Bereich promovierte sie am Helmholtz-Institut Freiberg für Ressourcentechnologie (HIF) und an der Aalto-Universität, wo sie 2022 ihre Dissertation erfolgreich mit Auszeichnung verteidigte. Für ihr innovatives Verfahren zum Graphit-Recycling aus gebrauchten Lithium-Ionen-Batterien erhielt sie 2022 den Europäischen Innovationspreis in der Kategorie EIT Change. Derzeit ist Anna Vanderbruggen Postdoktorandin am GeoRessources-Labor der Universität Lothringen in Frankreich. Sie setzt ihre Arbeit im Bereich Batterierecycling fort und unterrichtet an der Universität Mineralienverarbeitung und -recycling.
„Das Recycling von Graphit wurde oft zu Unrecht als unbedeutend abgetan. Mit meiner Arbeit konnte ich beweisen, dass Anodengraphit effektiv zurückgewonnen und in neuen Batterien wiederverwendet werden kann.“
-
Die stetig steigende Anzahl vernetzter Geräte, die speziell dazu entwickelt wurden, Umweltbedingungen präzise zu erfassen, treibt die Nachfrage nach lokaler, dezentraler Energieerzeugung auf ein Rekordhoch. Die Möglichkeit, beträchtliche Mengen an Energie vor Ort zu nutzen, hat das Potenzial, die weit verbreitete Nutzung dieser Geräte zu revolutionieren. Dies wiederum verspricht eine Verringerung des Wartungsaufwands, was nicht nur einen technologischen Durchbruch, sondern langfristig auch einen wirtschaftlichen Vorteil bedeutet. Im Rahmen seiner Promotion untersuchte Joel Joseph am Karlsruher Institut für Technologie (KIT) den innovativen Einsatz von thermomagnetischen Dünnschichtantrieben zur Entwicklung von thermischen Energiegewinnern mit sehr hoher Leistung pro Stellfläche. In einem Modell konnte er die Leistung pro Stellfläche im Vergleich zum ersten Prototyp um 340 Prozent steigern.
„Mit der zunehmenden Zahl von vernetzten Geräten steigt weltweit die Nachfrage nach autarken Geräten, die Energie aus ihrer Umgebung nutzen. Ich wollte einen Beitrag zu den Bemühungen um eine umweltfreundliche und nachhaltige Lösung leisten.“
-
Ungefähr 75 Prozent der weltweiten Landoberfläche zeigt Spuren menschlicher Nutzung. In ihrer Doktorarbeit erforschte Karina Winkler am Karlsruher Institut für Technologie (KIT) Landnutzungsänderungen der letzten 60 Jahre auf der Erde. Mithilfe von Satellitendaten, Landnutzungsstatistiken und -karten konnte sie die raumzeitlichen Muster von globalen Landnutzungsänderungen in hoher Auflösung sichtbar machen sowie deren Treiber und Auswirkungen aufs Klima analysieren. Karina Winkler arbeitet als Wissenschaftlerin in der Forschungsgruppe Landnutzungswandel und Klima am KIT Campus Alpin.
„Mit meiner Forschung möchte ich Landnutzung als weltweit vernetztes System von Mensch-Umwelt-Interaktionen greifbar machen, um den menschlichen ‚Fußabdruck‘ auf der Erde besser zu verstehen.“
-
Seiner Leidenschaft für angewandte Wissenschaften folgend, studierte Leonardo Ayala in Argentinien Physik und arbeitete in einem Optiklabor in El Salvador, wo er biologisches Gewebe mit optischen Bildgebungsverfahren untersuchte. Dies ermutigte ihn, am Deutschen Krebsforschungszentrum (DKFZ) über angewandte Biophotonik für die Krebsforschung mit Hilfe der Informatik zu promovieren. Leonardo Ayala entwickelt Anwendungen für die optische Bildgebung auf der Grundlage künstlicher Intelligenz mit dem Ziel, die spektrale Bildgebung in die klinische Praxis zu übertragen. Während seiner Doktorarbeit war es sein Ziel, Lösungen für die spektrale Bildgebung zu entwickeln, die auf klinische Probleme angewendet werden können. Zusammen mit seinem Team arbeitete er an der Überwachung des Blut- und Sauerstoffgehalts in inneren Organen während einer Operation (z.B. bei der Entfernung von Nierenkrebs).
„Ich träume davon, dass die spektrale Bildgebung in den Krankenhäusern routinemäßig eingesetzt wird, weil ich glaube, dass sie für die Patientenversorgung viel zu bieten hat.“
-
Die Niemann-Pick-Krankheit Typ C (NPC) gehört zu den seltenen lysosomalen Speicherkrankheiten, welche zu einer Neurodegeneration schon im Kindesalter führt. Das Tahirovic-Labor am Deutschen Zentrum für Neurodegenerative Erkrankungen (DZNE), München, erforscht vorrangig die zellulären Mechanismen, die zur Neurodegeneration führen. Hier untersuchte Lina Dinkel die Rolle der Immunzellen des Gehirns, die sogenannten Mikroglia, in der Neuropathologie von NPC. Sie konnte zeigen, dass Veränderungen der Mikroglia früh in der NPC-Pathologie auftreten und dass allein diese Veränderungen zur Neurodegeneration führen können. Diese zellulären Veränderungen konnte sie auch in peripheren Immunzellen, den Makrophagen, von NPC Patienten nachweisen, wodurch sich neue Möglichkeiten für Wirkstoffscreenings oder für die Überwachung von therapeutischen Interventionen in NPC Patienten bieten.
„Ich hoffe mit meiner Arbeit mehr Aufmerksamkeit für seltene Krankheiten zu generieren und zu zeigen, dass ihre Erforschung für das Verständnis zellulärer Mechanismen unerlässlich ist.“
-
In seiner Doktorarbeit „Spin waves in curved magnetic shells“ untersuchte Lukas Körber am Helmholtz-Zentrum Dresden-Rossendorf (HZDR) die komplexen Eigenschaften von Spinwellen in gekrümmten magnetischen Strukturen und leistete damit einen bedeutenden Beitrag zum Verständnis magnetischer Phänomene auf nanoskaliger Ebene. Während dieser Arbeit trug er zur Entwicklung neuer numerischer Methoden im Mikromagnetismus bei. So entwickelte er zum Beispiel eine effiziente Methode zur Berechnung von Spinwellenspektren in gekrümmten Geometrien. Zusammen mit Attila Kákay entwickelte er die Open-Source Software TetraX, die schnell Verbreitung in der wissenschaftlichen Community zur Erforschung von Spinwellen gefunden hat.
„Während meiner Promotion habe ich die grundlegenden Eigenschaften von magnetischen Wellen in gekrümmten Geometrien erforscht und damit hoffentlich zum tieferen Verständnis auf dem Gebiet der Magnetisierungsdynamik beigetragen.“
-
Hochgenaue, skalenauflösende Simulationen bieten die Chance, komplexe turbulente Strömungen in Triebwerken besser zu verstehen und zu analysieren. In seiner Dissertation entwickelte Michael Bergmann am Deutschen Zentrum für Luft- und Raumfahrt (DLR) ein effizientes Framework auf Basis der Discontinuous-Galerkin-Methode in dem CFD-Tool TRACE, um diese rechenintensiven Simulationen für den industriellen Einsatz zugänglich zu machen.
„Durch die enge Zusammenarbeit mit führenden Triebwerksherstellern hoffe ich, mit diesem Framework einen Beitrag zur Verwirklichung der klimaneutralen Luftfahrt leisten zu können.“
-
Offshore Windenergie ist ein wichtiger Baustein auf dem Weg in Richtung Klimaneutralität. Die weitreichenden Auswirkungen der Offshore Windenergie waren bislang jedoch kaum erforscht. In seiner Promotion am Helmholtz-Zentrum Hereon untersuchte Nils Christiansen mittels numerischer Modellierung den physikalischen Fußabdruck der Offshore Windenergie und zeigte, welche Veränderungen in der Nordsee durch die Windkraftanlagen auftreten können. Diese Erkenntnisse können als wichtige Grundlage dienen, Naturschutz beim Ausbau der Offshore Windenergie zu gewährleisten.
„Mit meiner Forschung möchte ich Einblicke in den Fußabdruck der Offshore Windenergie geben und zur Gestaltung einer naturverträglichen Energiewende beitragen.“
-
Traditionell werden Kopfhörer zur Bereitstellung von privaten Audiokanälen verwendet. In seiner am Karlsruher Institut für Technologie (KIT) abgeschlossenen Dissertation beschäftigt sich Tobias Röddigers damit, wie Kopfhörer der Zukunft aussehen könnten. Seine Forschung hat gezeigt, dass Earables – intelligente Sensorgeräte, die am Ohr getragen werden – bei der Atem- und Augenüberwachung, der Hustenerkennung, der kardiopulmonalen Wiederbelebung und der unsichtbaren Mensch-Computer-Interaktion eingesetzt werden können.
„Durch meine Forschung werden Kopfhörer zu multifunktionalen Alltagshelfern zur Gesundheitsüberwachung und Erweiterung menschlicher Fähigkeiten.“
-
Zina Kallien untersuchte im Rahmen ihrer Promotion am Helmholtz-Zentrum Hereon reibbasierte Fertigungstechnologien. Dabei lag ein besonderer Fokus auf dem Reibauftragschweißen – ein Prozess, der für Beschichtungen und die additive Fertigung Potenzial zeigt. Der simple Aufbau, der geringe Energieeintrag, der benötigt wird, und nicht zuletzt die homogenen Eigenschaften der aufgebauten Strukturen mit hoher Festigkeit bestätigen eindrucksvoll das Potenzial des Prinzips gegenüber vielen anderen (schmelzbasierten) Verfahren.
„Mit Blick auf Umwelt und Nachhaltigkeit müssen moderne Fertigungsprozesse viele Anforderungen erfüllen. Es ist notwendig, ein umfangreiches Verständnis grüner Technologien zu erlangen, um deren Potenziale auszuschöpfen und sie langfristig zu etablieren.“
-
Martin Angerers Forschungsinteressen umfassen neuartige Sensoren und Wandler mit Schwerpunkt auf medizinischen Anwendungen. Sein Fachwissen umfasst die Entwicklung, Modellierung, Herstellung, Charakterisierung und Optimierung von piezoelektrischen und mikromechanischen Sensor- und Wandlertechnologien. Am Karlsruher Institut für Technologie (KIT) promovierte er über neuartige Ultraschall-Wandlersysteme zur 3D-Bildgebung für die Brustkrebs-Frühdiagnostik. Die Ultraschall-Computertomographie kombiniert die Vorteile der Ultraschallbildgebung und der 3D-Bilddiagnostik. Dadurch hat sie das Potenzial, die Früherkennung von Brustkrebs maßgeblich zu verbessern.
„Ultraschall birgt ein enormes, ungenutztes Potenzial in verschiedenen Bereichen von Wissenschaft und Technik. Mich fasziniert besonders das Zusammenspiel von theoretischen Grundlagen und deren praktischer Anwendung um neuartige Technologien und Systeme zu ermöglichen.“
Prize Winners 2022
-
Metals and minerals are indispensable for a new energy system. To build and sustain this system, complex metal deposits must be mined with maximum efficiency and minimal environmental impact. Lucas Pereira from HZDR has been working on particle-based separation models in his PhD and applying machine learning to improve the understanding and prediction of mineral processing.
“Metals are the fuel of our new energy system. To build and maintain this system, complex metal deposits must be mined with maximum efficiency and minimum environmental impact. This is the challenge that drove me to develop a method to quantify the recoverability of individual micron-sized particles of complex nature.”
-
Earthquakes are among the most consequential natural hazards to which society is exposed. In his doctoral thesis at GFZ, Jannes Münchmeyer used artificial intelligence to understand earthquakes and provide early warning of strong tremors.
“Earthquakes are among the most consequential natural hazard society faces. In my research, I develop novel artificial intelligence methods to understand earthquakes and to provide early warning for strong shaking. This way, I aim to reduce the hazard posed by earthquake to humans.”
-
CRISPR are specific genetic segments in the DNA of bacteria and an important part of their immune system. This is where information about infections or modifications are stored. With the help of sophisticated technologies, this information can be used to better understand, predict and treat disease progression. In his PhD at HIRI, Chunlei Jiao has developed innovative CRISPR-based platforms that can also record past cell states and allow drawing conclusions about those pathogens that bacteria have previously encountered. This has great potential for more accurate diagnoses and treatments of diseases.
“CRISPR serves as a continual wellspring for new technologies. Throughout my PhD, I contributed to this expansion by developing innovative platforms for RNA detection and recording, which hold great potential for disease diagnosis.”
-
Supraglacial lakes in Antarctica form when meltwater collects on the ice surfaces. They influence whether glaciers loose or gain mass. Despite this, however, supraglacial lakes in Antarctica have hardly been studied to date. In her PhD, Mariel Dirscherl from DLR developed developed an AI-based system that for the first time evaluates optical and radar-based satellite images and can thus automatically record and analyze Antarctic meltwater lakes. The data set provides an important basis for modeling the future contribution of Antarctica to global sea level rise.
“Since supraglacial lakes in Antarctica have been poorly studied, I was particularly interested in raising awareness of their importance in the context of global climate change.”
-
Since its first second, our universe has been in a high-energy stage that involves particle physics that happens beyond and cannot (yet) be mapped by standard models. Thanks to gravitational waves emanating from primordial sources, we have access to and can explore previously unreachable time and energy scales. Peera Simakachorn investigated how current and future observatories are suited to explore gravitational waves in a wide range of frequencies in his PhD at DESY. His work has helped provide scientific arguments for future experiments, particularly for the Einstein telescope. In addition, Peera Simakachorn also researched gravitational waves in the ultrahigh-frequency range - currently still uncharted scientific territory.
„With current and future observatories, we’ll soon be able to read our cosmos’ uncharted history through the GW backgrounds, like a cosmic-history book. I’m happy to contribute to that.”
-
Pancreatic cancer is a highly lethal disease, which lacks efficient therapies. Chiarfa Falcomatá, from the Icahn School of Medicine at Mount Sinai in New York, has been studying the molecular and cellular bases of this tumor entity, gaining important knowledge on its biology, the cell types that compose it and what signals keep tumor cells alive and protect them from immune attack. With this important information, she has developed new strategies to block these signals and eliminate the tumor cells with the help of the immune system.
“So far, there are hardly any effective therapies against pancreatic cancer. With my research, I want to develop new strategies that our immune system can use to fight the tumor cells.”
-
Safe, efficient storage technologies are necessary for a successful energy transition. Hannes Radinger's doctoral research at KIT focused on carbon-based electrodes in flow batteries. These batteries have great potential as storage devices to store, for example, solar energy for the use during nights. To further advance this technology, Hannes Radinger has studied the surface properties, structure, and electrochemical behavior of these batteries. The results provide profound insights into the underlying interface phenomena in electrochemistry and help to expand the important fundamental research for energy storage.
„My passion for advancing energy storage technology and challenging existing beliefs drives me to push the boundaries of basic science.“
-
Microbiomes refer to the totality of microorganisms (e.g. bacteria or viruses) living on or in a host. The metabolic activities of these organisms can be used for various biotechnological applications, such as pharmaceutical products, food or detergents. Flávio Baleeiro investigated at UFZ and KIT how microbiomes can help us get rid of our waste while fixing carbon with unmatched efficiency. During the process, the microbiome produces chemicals that can be used in industrial processes.
“A microbiome can get rid of our trash and fix carbon with unmatched efficiency. This fascinating fact drives my pursuit of developing a circular economy around them.”
-
Low-temperature energy sensors such as the Magnetic Microcalorimeter achieve high resolutions, are fast and can be integrated on chips in large numbers. To make them useful for experiments or measurement systems and to read out temperatures close to absolute zero, a tailored readout method is needed. In his doctoral thesis, Nick Karcher at KIT developed a measuring electronic-system to read out signals from cryogenic particle detectors during the measurement time.
„I hope that my new method will open up completely new possibilities for future experiments in physics."
-
Richard Gebauer studied and completed his doctorate at the Karlsruhe Institute of Technology (KIT) in the field of quantum computing. Parallel to his doctorate, he completed a Master of Business Administration (MBA) at the international Collège des Ingénieurs. Since March, he has been working as a strategy consultant at PwC Strategy&, but also continues to support the scientific work at KIT as a postdoc.
„Innovative and disruptive technologies excite me. Contributing in quantum computing has been a great pleasure for me. The fact that our system enables new applications has always motivated me.”
-
Iulia Cojocariu graduated in chemistry from La Sapienza University, Rome, Italy. She then moved to Forschungszentrum Jülich at the Peter Grünberg Institute for Electronic Properties, where she completed her doctorate under the supervision of Prof. Claus M. Schneider. She defended her doctoral thesis in physics at the University of Duisburg-Essen. She is now working as a postdoc at the Elettra Synchrotron and at the University of Trieste.
„Molecular interfaces are extremely versatile tools for spin-electronic devices. My research contributes to a better understanding of their magnetic, chemical and electronic properties.“