Jump directly to the page contents

Materials Systems Engineering - Materials research as the key to technological progress

New, lightweight metal alloys for more fuel-efficient aircraft, batteries without lithium, and printed sensors for fast, affordable medical diagnoses: our world will use completely new materials in the future.

Thanks to their extremely fine structures, these materials will also have functions that still sound like science fiction today. They will be designed and manufactured down to the microscopic level. For example, tiny particles that use a targeted approach to dispense a drug at the source of a disease will use individual molecules as sensors to detect infected or diseased cells. Some of these materials will be able to do things previously only known from nature, such as the ability to heal themselves or adapt their outer form in flexible ways. In this way, materials research will serve as the key for technological advancements and ensure a prosperous society in the future.

In the “Materials Systems Engineering” program, we develop materials in the laboratory and digitally in order to be able to research, design and manufacture materials and novel devices in the necessary detail. An essential concept in this context is the “digital twin,” a virtual model that contains all information relating to the new material. This twin helps our researchers to understand how structure and function are related and helps to effectively explore the various possibilities. In other words, creating new things is one way we use digitalization. At the same time, new digital devices and applications themselves will only be possible based on new materials.

A crucial aspect is combining experimental research with digital material design. The spectrum of material systems we investigate extends from nanomaterials to biomaterials and interface phenomena through to the design of individual molecules. We use our knowledge from the field of information technology and seek to understand the efficient systems found in nature with the goal of developing multifunctional materials that are used in fields such as biotechnology and medicine. In addition, we are designing an extensive database that will enable us to predict the properties of certain materials more accurately in the future. This will allow us to combine materials and methods and create new synergies.

Our work is based on powerful research infrastructures. We make our large-scale devices and technology platforms available to scientists from around the world for their research. Examples of this include the Karlsruhe Nano Micro Facility at KIT and Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons at Forschungszentrum Jülich. These facilities serve as central technology platforms at Helmholtz for specifying structures and producing highly specialized products. Universities, research institutions, and industrial enterprises have the opportunity to use the technologies and devices made available by these infrastructures. In this way, we facilitate the rapid transfer of research results into practical applications.

Fact sheet:

  • Our digitalized future will require special, intelligent materials, and the field of materials research needs the tools offered by digitalization.
  • New substances provide new functions thanks to their filigree design at the microscopic level.
  • In the “Materials Systems Engineering” program, we explore materials at the necessary level of detail so we can improve, design, and fabricate them.
  • Linking digital methods in the area of big data analysis with experimental research on materials is vital to the success of this research.
  • One of the key concepts this involves is the “digital twin” of a material.
  • Our researchers focus on nanomaterials, biomaterials, and designing individual molecules.
  • Powerful research infrastructures such as the Karlsruhe Nano Micro Facility, the Ernst Ruska-Centre, and the Jülich Supercomputing Center create the basis for our work and are available for use by scientists from around the world.
  • The “Materials Systems Engineering” program attaches great importance to partnerships and collaborations with leading institutions in Germany and worldwide.

Christof Wöll

Program spokesperson Materials Systems Engineering
Karlsruhe Institute of Technology


  • Information

    6oo million euro budget, 500 researchers involved, 3,000 publications: After ten years, the Human Brain Project is coming to an end. We spoke with the scientific director Katrin Amunts from…

  • Information

    The new Chairwoman of the Board of Directors of Forschungszentrum Jülich, Astrid Lambrecht, in an interview about an innovative management style, her path to quantum physics, and how she wants to…

  • Information

    Building a robot that can test any software system, fix bugs and make it more secure is Andreas Zeller's vision. For his outstanding research, he received an ERC Advanced Grant worth 2.5 million euros…

  • Information

    They write seminar papers, scientific articles and can even design experiments. The Office of Technology Assessment has evaluated the consequences of AI chatbots like ChatGPT for education and science…

  • Information

    Francesca Santoro from Forschungszentrum Jülich is trying to use intelligent computer chips to influence human nerve cells in such a way that they can be used to correct disorders and errors such as…

  • Information

    Behind these three words in the CV of brain researcher Nataliia Fedorchenko lie war and flight, and the hope that she will be able to use her knowledge, which she is now contributing to the Human…

As curious as we are? Discover more.