ERC PROJECTS AND
THE STORIES BEHIND THEM

Ground-Breaking Research at Helmholtz
CONTENTS

5 Introduction

Helmholtz ERC Projects – Examples and Underlying Stories

6 Projects at a Glance I (Markus Schubert, Oliver Daumke)

8 "Nothing else in Europe can compete with it"
Geologist Guido Grosse on Starting Grants

10 "Liquid bridges for solid matter"
Mechanical engineer Erin Koos improves material properties

12 Helping the Lung Heal Itself
An interview with biomedical scientist Melanie Königshoff

14 Seeing the Wood for the Trees
Physicist Thorsten Wiegand uses computer models to simulate ecosystems

16 Projects at a Glance II (Michael Boutros, Ralph W. Allmann)

Key Figures and Services

18 Overview of All Helmholtz ERC Projects

22 Statistics

24 Services and Additional Information on ERC Grants

26 Contact

27 Location of the Helmholtz Research Centres
INTRODUCTION

Multidisciplinary teamwork is essential to the work of the Helmholtz Association. It allows us to produce outstanding research findings and contribute to solving the major challenges facing society. This is as true of projects within Germany as it is of those at the European level.

However, this brochure has a slightly different focus. It looks at the individual funding that the European Research Council awards to excellent researchers with ground-breaking ideas. Is this focus a contradiction? Not at all: in addition to allowing individuals to pursue their own ideas, the ERC funding instruments give them scope to put together a group – a team – of people with complementary expertise. For researchers, the prospect of turning their ideas into pioneering findings is at least as attractive as the funding itself. This has helped the ERC acquire an admirable reputation in an extremely short space of time.

Helmholtz and the ERC – a success story

With the first ERC funding period of the 7th Framework Programme over, it was time to take stock. The Helmholtz centres have obtained over 50 grants – with a combined allocated budget of more than €80 million. These grants have formed the basis of numerous success stories (for a project overview, see p. 18; for statistics, see p. 22). We would like to present examples of the research behind project acronyms, from the structural biology in MitoShape to the process technology in XFLOW. How do researchers work with an ERC grant? What are some possible career paths?

"Horizon 2020", the European Commission’s programme for promoting research and innovation, has doubled the ERC’s budget. Many researchers will want to benefit from this. One thing is clear: it is worthwhile for them to apply.

Distinctive research fields – excellent research programmes

Thanks to the wide range of topics it covers in its six distinctive research fields, the Helmholtz Association offers researchers numerous entry points for ERC projects. Strategic research programmes and the use of the most modern scientific infrastructure, including large-scale facilities, characterise the work and provide a foundation for excellence. Hence, the Helmholtz centres are attractive employers for young and well-established researchers alike. The Helmholtz Association has high standards when it comes to talent management. The strategy begins with the targeted recruitment of highly qualified individuals at all levels, and then moves on to provide employees with comprehensive support so that they can develop their full potential. This support also includes services designed to assist researchers on the path to an ERC grant (see p. 24).

Kind regards,
The Helmholtz Brussels Office
What is your project about?
"In the chemical industry, many processes involve contacting gases and liquids to achieve a certain reaction. But we never know exactly what will happen when these fluids meet. Will the gas form lots of small bubbles in the liquid or accumulate to form bigger gas structures, like one big bubble? My project investigates these turbulent bubble flows, as they are called. Our understanding of these flows is still fragmentary, even though they are an extremely important aspect of processes in chemical reactors. To enhance our understanding of these gas-liquid flows, we are using imaging methods similar to those used in medicine. The challenge is that these have to be extremely fast."

What concrete research goal are you pursuing with the project?
"We want to use ultrafast X-ray tomography to gain new insights into the flow processes that take place in reactors. The knowledge gained can then be used to develop new models to predict flows and optimise processes. Our research could have a huge impact on the performance of industrial chemical reactors because the processes that we are investigating play an important role in the manufacture of fuels and cosmetics, to give just two examples. Our findings may therefore lay the foundations for developing more ecologically sound products that can be manufactured using less energy."

How is the ERC grant aiding your research?
"The grant makes my engineering work extremely high profile. It also gives me a lot of freedom to pursue my research interests independently. And the short draft proposal gives me the scope to make the necessary adjustments as the project evolves. This allows me to develop my own research interests very productively. I’m also hoping that the grant will enhance my future prospects as a researcher."

What is your project about?
"I am interested in how mitochondria obtain their specific shape and why they often change their shape in diseases such as Parkinson’s and Alzheimer’s. These are important questions that research has been grappling with for 60 years. Mitochondria are also known as the ‘powerhouses of the cell’ because they produce fuel molecules and thus supply energy to cells. But they also play a crucial role in cell death. Mitochondria are bounded by a double membrane: there is an outer smooth membrane and an inner invaginated one. This inner membrane is very important as the entire respiratory chain of the cell, for example, takes places there. In certain neurological diseases, however, this membrane is not correctly formed. We want to know why."

What concrete research goal are you pursuing with the project?
"Several proteins that are important for the invaginations of the inner membrane have already been identified. As structural biologists, we are now investigating the three-dimensional structure of these proteins. We want to find out how, like mini machines, they produce these invaginations. If we know more about this process, we will hopefully understand the diseases better on the molecular level."

How is the ERC grant aiding your research?
"It gives me the opportunity to focus on one project for five years together with my team. And during this time I don’t have to acquire new funding. Such a long-term view is very important for tackling difficult research questions. The ERC grant is perfectly suited to a big research project of this kind, which involves four or five other researchers, all complementing one another’s expertise. This deepens and consolidates my research."

XFLOW – ULTRAFAST X-RAY TOMOGRAPHY OF TURBULENT BUBBLE FLOWS

Principal investigator
Dr Markus Schubert
Grant
Starting Grant 2012
Research field
Process engineering
Panel
PE8
Host institution
Helmholtz-Zentrum Dresden-Rossendorf
Funding period
1 January 2013–31 December 2016
ERC funding
€1,172,640

MITOSHAPe – STRUCTURAL BASIS OF MITOCHONDRIAL INNER MEMBRANE SHAPE AND DYNAMICS

Principal investigator
Prof Oliver Daumke
Grant
Consolidator Grant 2013
Research field
Structural biology
Panel
LS1
Host institution
Max Delbrück Center for Molecular Medicine in the Helmholtz Association
Funding period
1 July 2014–30 June 2019
ERC funding
€2,000,000
“NOTHING ELSE IN EUROPE CAN COMPETE WITH IT”

His research took him to Alaska, but the prestigious ERC grant brought Guido Grosse back to Europe. In this interview, the geologist explains how research into permafrost can even be conducted from Potsdam.

Mr Grosse, grants from the European Research Council are highly coveted. Do you remember the moment you received the invitation?

I was about to head out for fieldwork on my snowmobile in northern Alaska. I finished this work earlier and turned up for the interview I was about to head out for fieldwork on my snowmobile in northern Alaska. I finished this work earlier and turned up for the interview. Mr Grosse, grants from the European Research Council are highly coveted. Do you remember the moment you received the invitation?

“Nothing else in Europe can compete with it”

I managed to get published, secure funding for projects and establish myself as an assistant professor.

So why return?

I wanted to establish my own independent group and improve remote sensing methods. This works much better with solid long-term funding. After nearly seven years in the US, I applied for an ERC grant in autumn 2012 – with the possibility of returning to Europe and the AWI in mind. I had maintained all my old contacts while in the US. An ERC project is no walk in the park. At what point would you say someone is ready to submit an application?

I applied for a Starting Grant just in the nick of time. A little later and I would have been competing for a Consolidator Grant instead. One of my advantages was certainly my several years of US research experience, which meant I had good publications, project leadership and international partnerships on my record. However, some people even manage to get the grant soon after finishing their PhDs.

How do you persuade people in such an important meeting?

You need to be enthusiastic about your project, make it plain that this is a great project idea and convince the panel that you really are able to pull it off and manage the remaining risks.

What is your project about?

I investigate permafrost, i.e. soils that are permanently frozen. These soils store large amounts of carbon originating from plant and animal remains, about twice as much carbon as is present in the atmosphere. Climate change is causing some of these areas to thaw rapidly, mobilising the carbon that has been stored in them for thousands of years. The result is a release of greenhouse gases like CO₂ and methane into the atmosphere. This is widely known – what is uncertain is the extent to which it is happening. The questions we ask in our project are therefore: Which areas are particularly susceptible to thawing? And how much carbon is affected?

How will you go about answering all these questions?

We intend to measure the amount and distribution of carbon in the soils in Siberia and Alaska and study thawing processes. Then we will apply the results to larger areas using remote sensing. Time series of satellite images will show us how the landscape changes, including how fast the soil is thawing, e.g. around lakes. This will enable us to create predictive models at a later stage.

What sparked your interest in this field?

I studied geology, and for my diploma thesis I did some fieldwork in the Arctic, which I found so interesting that I wanted to continue working on the topic. And that’s just what I’ve been doing since finishing my doctoral degree at the University of Potsdam and the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI).

You have just returned to the AWI after a number of years in the US. That’s right. After finishing my PhD I asked myself: where are the experts, where can I learn the most in a short period of time and where can permafrost be found? The University of Alaska was the perfect environment in which to continue my academic career. While in Alaska I managed to get published, secure funding for projects and establish myself as an assistant professor.

So why return?

I wanted to establish my own independent group and improve remote sensing methods. This works much better with solid long-term funding. After nearly seven years in the US, I applied for an ERC grant in autumn 2012 – with the possibility of returning to Europe and the AWI in mind. I had maintained all my old contacts while in the US. An ERC project is no walk in the park. At what point would you say someone is ready to submit an application?

Good question! I applied for a Starting Grant just in the nick of time. A little later and I would have been competing for a Consolidator Grant instead. One of my advantages was certainly my several years of US research experience, which meant I had good publications, project leadership and international partnerships on my record. However, some people even manage to get the grant soon after finishing their PhDs.

How do you prepare an application like this?

I worked closely with former colleagues from the AWI and the centre’s EU funding specialists. Particularly for fieldwork outside of Europe, there are a lot of administrative factors to bear in mind that need careful planning.

What does the ERC grant mean for you?

Scientific independence! It offers a fantastic opportunity to build up a group of my own ever an extended period of time and conduct independent research at this relatively early stage in my career. Nothing else in Europe can compete with that.

Could you have done it without the grant?

Given how important the project is to me, I would have tried to finance it without the ERC, though on a different scale. As to whether I would nonetheless have returned to Europe, who knows? So far, I’m glad I did – although Germany did take some getting used to after such a long time abroad. It was great to have colleagues at the AWI who helped smooth this transition.

PETA-CARB – Rapid Permafrost Thaw in a Warming Arctic and Impacts on the Soil Organic Carbon Pool
Grant: Starting Grant 2013
Research field: Geosciences, polar research
Panel: PE10
Principal investigator: Dr Guido Grosse
Host institution: Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research
Funding period: 1 November 2013–31 October 2018
ERC funding: €1,786,966

Research Focus

The rapid thaw of permafrost is considered to be one of the largest changes in terrestrial ecosystems induced by climate warming. The underlying carbon cycle processes are complex and poorly understood. The project aims to close this knowledge gap in view of permafrost thawing in Eastern Siberia and Alaska. In cooperation with researchers from the Far Eastern Institute of Geology and Mineral Resources of the Russian Academy of Sciences in Yakutsk, Grosse and his team will conduct investigations into the organic carbon store in permafrost soils in the Russian Arctic. With the help of the ERC grant, the team plans to establish a Centre for Interdisciplinary Permafrost Research (CIPR), which will continue to foster joint research projects and training of researchers.

The ERC-Starting Grant will be used to establish a team of researchers at the AWI in Potsdam, who will establish a Centre for Interdisciplinary Permafrost Research (CIPR). This Centre will foster joint research projects and training of researchers.

The team will use the ERC-Starting Grant to establish a team of researchers at the AWI in Potsdam, who will establish a Centre for Interdisciplinary Permafrost Research (CIPR). This Centre will foster joint research projects and training of researchers.
The image that Erin Koos uses to explain the subject of her research is as fitting as it is simple: “Imagine a child building a sandcastle. If the child uses only dry sand, the result will always be a shapeless heap. However, as soon as a little water is added, all sorts of elaborate structures become possible.” Koos, who holds a PhD in mechanical engineering, has developed her own method of improving material properties. This method exploits the principle of capillary action, the same physical effect that holds the sand and water mixture together: water molecules penetrate between the grains of sand, forming liquid connections known as capillary bridges. Surface tension is created between the liquid and solid media, keeping the connection stable. “We transfer this concept to a scale of a few micrometres or nanometres. And when the effect is applied to suspensions, we obtain materials with very interesting properties,” explains Koos.

Suspensions are mixtures with a viscous to gel-like consistency, comprised of a liquid in which solid particles are evenly distributed, such as paint and molten chocolate. The method developed by Koos consists of adding a second, immiscible liquid to the mixture. This liquid forms bridges between the solid particles, resulting in a stable meshed structure. The advantages of this procedure over conventional suspensions go beyond stability, however. “The new method makes it possible to fine-tune the desired material properties in advance by combining different liquids,” says Koos. The method could be used to manufacture ultra-lightweight and resilient building materials, but also, for instance, filters made from glass which are both porous and robust.

“If we can describe the microstructure, it helps us predict how the material will behave in larger amounts.”

Koos came across this potential application of capillary action by chance, shortly after leaving the California Institute of Technology in Pasadena, US, to join the Applied Mechanics Working Group at the Karlsruhe Institute of Technology (KIT) in 2009. “We were investigating the cause of some quality issues experienced by a manufacturer of PVC products, and discovered that the solid particles were adsorbing tiny amounts of water during processing due to humidity in the air.” It quickly became clear to Koos that the cause was capillary action. She recognised the potential implications of the process for materials research, and developed the concept of capillary suspensions. Since August 2013, her work has been funded by the European Research Council (ERC) with a Starting Grant for young researchers.

The 33-year-old’s arrival at the KIT was anything but a coincidence, however. Koos had set herself a clear objective: “I wanted to take the next step on the road to becoming a professor and conduct independent research with a group of my own. I also wanted to experience a different academic culture.” She found both things at the KIT: a research topic that interested her, and colleagues willing to support her in developing her career. “The KIT helped me find the right funding opportunity with the ERC grant.”

By the end of the five-year funding period, Koos hopes to understand the underlying principles and effects of capillary action in suspensions. But that is not all: “It would be nice to develop some prototypes in collaboration with industry. Then I could say: my ideas contributed to the design of this product.”

LIQUID BRIDGES FOR SOLID MATTER

Mechanical engineer Erin Koos improves material properties. Her aim: to fine-tune them in advance by combining different liquids.
HELPING THE LUNG HEAL ITSELF

Chronic lung diseases are a serious threat to many people worldwide. Can the lung heal itself? In her ERC project, biomedical scientist Melanie Königshoff is relying on close collaboration between medicine and the life sciences to find the answer.

Ms Königshoff, in 2010 you received an ERC Starting Grant for research into the regenerative potential of the human lung. What exactly is the project about?

We aim to find out to what extent the lung can repair itself, and we want to identify the switch that will trigger the regeneration process. Chronic lung diseases like pulmonary fibrosis and chronic obstructive pulmonary disease (COPD) are becoming increasingly common all over the world, but there are still very limited ways of treating the causes of these conditions.

What was your starting point?

We came across the Wnt signalling pathway in lung diseases for the first time in 2009. This cellular signalling pathway is important for many organs during embryonic development, as it activates genes that affect tissue formation. Back then, we identified this pathway, as well as a key mediator protein, in pulmonary fibrosis. In COPD, due to which patients suffer a progressive loss of lung tissue, we found that Wnt signalling was reduced. Using mouse models, we were able to show that activating the Wnt signalling pathway can counteract lung tissue loss and improve lung function.

Your ERC funding runs until 2016, so you’re about halfway through now. What have been the most important milestones so far?

One of the first milestones was putting the team together for my first laboratory. An ambitious project like this can only succeed if you have dedicated researchers who are able to work in an interdisciplinary manner. It took a bit of time to reach that milestone. Now I’ve got an amazing team and we’ve produced our first results and identified key molecules involved in Wnt signal-mediated lung regeneration, which is very exciting.

What about other milestones?

Our first research goals were obviously important milestones. A particularly important one was to establish a new method to investigate human lung regeneration with the help of the ERC funding. It is essential to achieving our goal. We wanted to take the knowledge we had gained from studying animal models and transfer that to COPD patients. One of the challenges we tackle together with clinicians at Munich University Hospital is to identify suitable human sample material and get it from the operation theatre to our laboratory quickly and with all the information needed. We’re now at a stage where the cycle works very well.

You made the step from mouse models to patients quite swiftly.

Yes. That was important to us. For this kind of effort to succeed, though, you need to be in the right place. The Comprehensive Pneumology Center (CPC), which is a translational centre for lung research, was set up to do exactly what we were aiming for. We cooperate with several clinical departments within the CPC, which means we have physicians and experimental researchers working under one roof. I’m a medical doctor and hold a PhD in life sciences, so this close collaboration is extremely important to me. Also, since we’re part of the Helmholtz Association, we get lots of opportunities to work with other institutes.

How is that helpful?

I’ll give you an example: The Institute of Stem Cell Research is part of the Helmholtz Zentrum München, and our colleagues there are also interested in Wnt signalling, as this is important for stem cell functions. Because we can discuss our observations with the team there, we can produce a more detailed analysis of the role that endogenous stem cells might play in lung regeneration. Being able to draw on this expertise is very useful. I have the perfect set-up here: close links with hospitals, on the one hand, and the Helmholtz structure with its broad range of research topics, on the other.

PEARL – Priming Epithelial Cell Activation to Regenerate the Lung
Grant: Starting Grant 2010
Research field: Respiratory medicine
Panel: LS7
Principal investigator: Dr Melanie Königshoff MD
Host institution: Helmholtz Zentrum München – German Research Center for Environmental Health
Funding period: 1 April 2011–31 March 2016
ERC funding: €1,291,800
In his quest for answers, Wiegand – together with his colleague Andreas Huth – is primarily studying two large datasets built up by field researchers in Panama and Sri Lanka. The data were collected in species-rich tropical rainforest areas of 25 to 50 ha, one on flat terrain and the other on hilly. Every tree with a trunk (or stem) larger than a pencil is mapped. To begin with, the team plotted the position of each tree in computer models and analysed the spatial patterns of the mapped trees. In parallel, they worked on general simulations: what is the effect of changing the way trees compete, die or disperse their seeds? The project combines high computer power with the latest methods of ecological modelling and spatial data analysis. “It was not clear from the outset whether we would succeed in spatially modelling so many species in the forest,” says Wiegand. “The model contains between 50,000 and 100,000 trees – and every change had to be simulated for each individual tree.” The simulations for each version of the model, which involve two million parameter sets, take between one and two weeks to run – a major undertaking.

In order to obtain even better results, the group also uses data from other regions and climate zones. “It’s a give-and-take situation,” says Wiegand. “Researchers from other countries come to the UFZ and use our methods to analyse their data, and we use their findings in our next calculations.” The group is now in the hectic final stages of the project. It is time to bring it all together: can the data from the simulations explain the spatial patterns of real forests? What other findings can be derived from the models?

This pioneering research has been made possible by an Advanced Grant awarded to Wiegand in 2008 by the European Research Council. “It’s probably a once-in-a-lifetime opportunity: the chance to pursue my own creative ideas in a large team, under optimal conditions!” he says.

“We don’t get caught up in details. This helps us to stay on track when working with models comprising up to 100,000 trees.”

Although the ERC team is primarily concerned with basic research, there are also a number of concrete applications. For instance, the detailed data could help determine the carbon balance of forests. Ultimately, the results of the research could play an important part in finding ways to protect biodiversity more effectively, says Wiegand.

The physicist brings years of modelling experience to the table and has a flair for simulations. What else is important for his work in the field of ecology? “Given my research interest, I could not work in isolation as a modelling specialist,” says Wiegand. “I have to stay abreast of current discussions in biology and ecology in order to know what the hot topics are.” Of course, the structured approach that he and Andreas Huth have learned from physics is a valuable asset. “We don’t get caught up in details. This helps us to stay on track when working with models comprising up to 100,000 trees.”
What is your project about?
"Genes rarely work alone; most diseases are influenced by several genes at once. But how do they work together and what specific processes do they influence? To find answers to these questions, we are analysing genes in cultured cells from different organisms – like the fruit fly Drosophila – and from human tumours. We are especially interested in genes that control cellular signalling pathways. This is because many tumours are caused by faulty transmission of cellular growth signals. To help us better understand the underlying processes, we are using a method called RNA interference to observe what happens when we inhibit the function of several genes at once."

What concrete research goal are you pursuing with the project?
“We are systematically cataloguing genetic interactions, which gives us an overview of each gene’s interaction partners. We also rely heavily on bioinformatics to analyse very large data sets. The general idea is to produce a comprehensive digital map of the genome that will guide us in further analysing the interplay of genes. Let me give you an example to help illustrate how this works: When two people on a social network like Facebook have friends in common, there is a good chance that the two of them will know each other – even if they aren’t actually connected to each other. If you apply that concept to genes, you can see how interaction profiles allow us to predict which genes perform the same function. One of our long-term goals is to be able to use these genome maps to predict which processes need to be simultaneously inhibited to make combination therapies in cancer as effective as possible.”

How is the ERC grant aiding your research?
“The grant means that we can conduct a cutting-edge, high-risk research project. The ERC support gives us the freedom to develop new methods beyond what is currently technologically possible and to apply these approaches to systematically explore functional relationships in genomes. Interdisciplinary methods are particularly valuable for us. I believe that understanding how the different elements in our genome and their products are connected is one of the most exciting frontiers in genome biology.”

Principal investigator
Prof Michael Boutros

Grant
Advanced Grant 2011
Research field
Genome biology
Panel
LS2
Host institution
German Cancer Research Center (DKFZ)
Funding period
1 August 2012–31 July 2017
ERC funding
€2,500,000

SYNGENE – GLOBAL MAPPING OF SYNTHETIC GENETIC INTERACTIONS IN DROSOPHILA

What is your project about?
"We are systematically cataloguing genetic interactions, which gives us an overview of each gene’s interaction partners. We also rely heavily on bioinformatics to analyse very large data sets. The general idea is to produce a comprehensive digital map of the genome that will guide us in further analysing the interplay of genes. Let me give you an example to help illustrate how this works: When two people on a social network like Facebook have friends in common, there is a good chance that the two of them will know each other – even if they aren’t actually connected to each other. If you apply that concept to genes, you can see how interaction profiles allow us to predict which genes perform the same function. One of our long-term goals is to be able to use these genome maps to predict which processes need to be simultaneously inhibited to make combination therapies in cancer as effective as possible.”

How is the ERC grant aiding your research?
“The grant means that we can conduct a cutting-edge, high-risk research project. The ERC support gives us the freedom to develop new methods beyond what is currently technologically possible and to apply these approaches to systematically explore functional relationships in genomes. Interdisciplinary methods are particularly valuable for us. I believe that understanding how the different elements in our genome and their products are connected is one of the most exciting frontiers in genome biology.”

Principal investigator
Prof Michael Boutros

Grant
Advanced Grant 2011
Research field
Genome biology
Panel
LS2
Host institution
German Cancer Research Center (DKFZ)
Funding period
1 August 2012–31 July 2017
ERC funding
€2,500,000

AXIS – FRONTIERS IN ATTOSECOND X-RAY SCIENCE: IMAGING AND SPECTROSCOPY

What is your project about?
"Our team is concerned with using the latest laser and particle accelerator technology to generate world-record short X-ray pulses that we can use, for example, to investigate matter. Normally, a sample becomes heated when light shines on it and this can be problematic, for example, if the heat damages the sample or distorts the test results. Our X-ray flashes will be about 200 times shorter than has been previously possible, so the samples will hardly be heated despite the high intensity of the light. This means that we will even be able to measure fast natural processes such as plant photosynthesis and investigate how plants capture sunlight and convert it into energy in a carbon neutral process."

What concrete research goal are you pursuing with the project?
"At the moment we are focusing on constructing a very compact accelerator and light source. Unlike its older siblings, which measure hundreds or even thousands of metres, it is to be no more than several metres long. This requires an entirely new approach. Ultimately, we want to use the accelerator to make detailed measurements of photosynthesis and to enhance our understanding of how this process works on the electronic level. It may even be possible to artificially recreate the process. The tool itself has the potential to be widely disseminated, as such a small light source could be set up just about anywhere, making it a development that could interest a great number of researchers across different fields."

How is the ERC grant aiding your research?
"The Synergy Grant has made it possible for the four of us – researchers with disciplines ranging from accelerator physics to biology – to work together as a team: a very refreshing combination of expertise! We can jointly decide from the outset how we can reach our goals and how we can best coordinate technical development with research applications. And the grant makes it financially possible for us to implement our daring and ground-breaking idea: after all, our research goal is based on the premise that we will actually succeed in developing the right facility. If we do, we will be able to apply it to some of the most fundamental processes in biology.”

Principal investigators
Dr R. W. Aßmann (photo), Prof H. Chapman, Prof P. Fromme, Prof F. Kärtner (coord.)

Grant
Synergy Grant 2013
Research field
Laser technology, accelerator physics, biology, spectrometry
Host institution
Deutsches Elektronen-Synchrotron DESY
Funding period
1 August 2014–31 July 2020
ERC funding
€13.8 million
<table>
<thead>
<tr>
<th>Call Code</th>
<th>Surname, Name</th>
<th>Centre</th>
<th>Acronym</th>
<th>Title</th>
<th>Panel</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERC-2007-StG</td>
<td>Adrian, Lorenz</td>
<td>UFZ</td>
<td>MICROFLEX</td>
<td>Microbiology of dehalococcoides-like chloroflexi</td>
<td>LS5</td>
<td></td>
</tr>
<tr>
<td>ERC-2007-StG</td>
<td>Lopes-Scher, Hemán</td>
<td>HMGU</td>
<td>SENSORINEURAL</td>
<td>Elaboration and refinement of sensorineural dendritic architecture</td>
<td>LS1</td>
<td>since 2012 at HMGU</td>
</tr>
<tr>
<td>ERC-2007-StG</td>
<td>Roost, Bjornem</td>
<td>AWI</td>
<td>PHYTOCHANGE</td>
<td>New approaches to assess the responses of phytoplankton to global change</td>
<td>PE8</td>
<td></td>
</tr>
<tr>
<td>ERC-2009-StG</td>
<td>Hoffmann-Vogel, Regina</td>
<td>KIT</td>
<td>NANOCONTACTS</td>
<td>Structural and electronic properties of nanocaps metal contacts fabricated by thermally assisted electromigration</td>
<td>PE3</td>
<td></td>
</tr>
<tr>
<td>ERC-2009-StG</td>
<td>Lickert, Heiko</td>
<td>HMGU</td>
<td>CILIARYDISEASE</td>
<td>Deciphering mechanisms of ciliary disease</td>
<td>LS3</td>
<td></td>
</tr>
<tr>
<td>ERC-2009-StG</td>
<td>Rivallais, Éléonore</td>
<td>GFZ</td>
<td>CCMP</td>
<td>Physics Of Magma Propagation and Emplacement: a multi-methodological Investigation</td>
<td>PE10</td>
<td>since 2012 at GFZ</td>
</tr>
<tr>
<td>ERC-2009-StG</td>
<td>Spagnoli, Francesca</td>
<td>MDC</td>
<td>HEPATOPCRISEAN</td>
<td>Mechanisms underlying cell fate decision between pancreas and liver</td>
<td>LS6</td>
<td></td>
</tr>
<tr>
<td>ERC-2010-StG</td>
<td>Cisin-Sax, Luke</td>
<td>HZI</td>
<td>CMVAGSTIMULUS</td>
<td>Molecular mechanisms of persistent antigenic stimulation in cytomegalovirus infection</td>
<td>LS6</td>
<td></td>
</tr>
<tr>
<td>ERC-2010-StG</td>
<td>Epelbaum, Eugeny</td>
<td>FZI</td>
<td>NUCLEAREFF</td>
<td>Nuclear Physics from Quantum Chromodynamics</td>
<td>PE2</td>
<td>since 2010 at Ruhr University of Bochum</td>
</tr>
<tr>
<td>ERC-2010-StG</td>
<td>Haubier, Susanne</td>
<td>HZI</td>
<td>RESISTOME</td>
<td>Towards an individualised therapy and prevention of multidrug resistant disease</td>
<td>LS7</td>
<td></td>
</tr>
<tr>
<td>ERC-2010-StG</td>
<td>Heinekmäki, Mathias</td>
<td>HMGU</td>
<td>LIVERCANCER-MECHANISM</td>
<td>Uncovering the mechanisms of inflammation induced liver tissue destruction and carcinogenesis</td>
<td>LS4</td>
<td></td>
</tr>
<tr>
<td>ERC-2010-StG</td>
<td>Krippert, Peter</td>
<td>KIT</td>
<td>DESERTSTORMS</td>
<td>Desert Storms – Towards an Improved Representation of Meteorological Processes in Models of Mineral Dust Emission</td>
<td>PE10</td>
<td>since 2013 at KIT</td>
</tr>
<tr>
<td>ERC-2010-StG</td>
<td>Königshoff, Melanie</td>
<td>HMGU</td>
<td>PEARL</td>
<td>Priming epithelial cell activation to regenerate the lung</td>
<td>LS7</td>
<td></td>
</tr>
<tr>
<td>ERC-2010-StG</td>
<td>Poulet, James</td>
<td>MDC</td>
<td>BRAINSTATES</td>
<td>Brain states, synapses and behaviour</td>
<td>LS5</td>
<td></td>
</tr>
<tr>
<td>ERC-2010-StG</td>
<td>Pouy, Matthew</td>
<td>MDC</td>
<td>ISLETVASC</td>
<td>Molecular mechanisms regulating pancreatic islet vasculization</td>
<td>LS4</td>
<td></td>
</tr>
<tr>
<td>ERC-2010-StG</td>
<td>Razensky, Daniel</td>
<td>HMGU</td>
<td>DYNAMIT</td>
<td>Deep Tissue Optoacoustic Imaging for Tracking of Dynamic Molecular and Functional Events</td>
<td>LS7</td>
<td></td>
</tr>
<tr>
<td>ERC-2010-StG</td>
<td>Schneider, Matthias</td>
<td>KIT</td>
<td>MUSICA</td>
<td>Multiplatform remote sensing of isotopologues for investigating the cycle of atmospheric water</td>
<td>PE10</td>
<td></td>
</tr>
<tr>
<td>ERC-2010-StG</td>
<td>Telerman, Aurélio</td>
<td>DKFZ</td>
<td>TDR-AA</td>
<td>Ammo acid sensing by TDR</td>
<td>LS3</td>
<td></td>
</tr>
<tr>
<td>ERC-2010-StG</td>
<td>Theis, Fabian</td>
<td>HMGU</td>
<td>LATENTCAUSES</td>
<td>Modelling latent causes in molecular networks</td>
<td>PE7</td>
<td></td>
</tr>
</tbody>
</table>
THE ERC WITHIN HORIZON 2020 – BUDGET 2014–2020

STATISTICS

HELMHOLTZ ERC GRANTS PER YEAR 2007–2013 (FP7)

This overview takes into account only those grants acquired directly through Helmholtz. Grant holders who have come from or left for other institutions are not included, nor are collaborations.

* No call for Advanced Grants in 2007.
* First calls for Synergy Grants in 2012, for Consolidator Grants in 2013.

RANKING: ERC GRANTS OBTAINED BY TOP RESEARCH ORGANISATIONS IN FP7

(Hosting at least 30 grants)

<table>
<thead>
<tr>
<th>Organisation 1</th>
<th>Country</th>
<th>Starting/Consolidator Grants</th>
<th>Advanced Grants</th>
<th>Total 2, 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 National Centre for Scientific Research (CNRS)</td>
<td>FR</td>
<td>142</td>
<td>66</td>
<td>208</td>
</tr>
<tr>
<td>2 Max Planck Society</td>
<td>DE</td>
<td>67</td>
<td>45</td>
<td>112</td>
</tr>
<tr>
<td>3 National Institute of Health and Medical Research (INSERM)</td>
<td>FR</td>
<td>39</td>
<td>18</td>
<td>57</td>
</tr>
<tr>
<td>4 Helmholtz Association 4</td>
<td>DE</td>
<td>35</td>
<td>14</td>
<td>49</td>
</tr>
<tr>
<td>5 French Alternative Energies and Atomic Energy Commission (CEA)</td>
<td>FR</td>
<td>34</td>
<td>9</td>
<td>43</td>
</tr>
<tr>
<td>6 Spanish National Research Council (CSIC)</td>
<td>ES</td>
<td>25</td>
<td>15</td>
<td>40</td>
</tr>
<tr>
<td>6 National Institute for Research in Computer Science and Automatic Control (INRIA)</td>
<td>FR</td>
<td>19</td>
<td>12</td>
<td>31</td>
</tr>
</tbody>
</table>

1 Only research organisations are listed, not institutions of higher education.
2 In official ERC statistics only the single Helmholtz centres are listed.
4 Synergy Grants are not included.

To evaluate the relevance of ERC funding the following figures illustrate its share of the Horizon 2020 budget.

Source: Statistics of the Helmholtz Office Brussels
This overview takes into account only those grants acquired directly through Helmholtz. Grant holders who have come from or left for other institutions are not included, nor are collaborations.

HELMHOLTZ: ATTRACTIVE FOR INDIVIDUAL SCIENTISTS INTERESTED IN THE ERC

Background – what does the ERC have to offer?
The European Research Council (ERC) was created in 2007 by the European Union to implement a funding programme for ground-breaking “pioneer research”. Its goal is to boost excellence and creativity in European research and to promote Europe as an attractive place to work for the best researchers worldwide.

Since 2013, there have been five funding schemes for applicants:

Content and topics – who can apply?
The ERC funding schemes are open to all topics and addressed to excellent individual scientists from all subject areas, all disciplines and all career levels. The only selection criterion is the scientific excellence of the researchers and their projects. The ERC aims to cover all areas from basic research to application-oriented research.

What are the prospects for funding?
The ERC has acquired an admirable reputation in an extremely short time. It has continued to award grants under the “Excellent Science” pillar of Horizon 2020, the EU’s Framework Programme for Research and Innovation. A considerably increased budget, now amounting to €13 billion, has boosted the attractiveness of the ERC as a funding source.

Why do research with an ERC grant at Helmholtz?
Helmholtz is an attractive employer for excellent scientists from all over the world and concentrates its work in six research fields: Energy; Earth and Environment; Health; Aeronautics, Space and Transport; Key Technologies; and Matter. The ERC programme is suitable for establishing new research topics at the Helmholtz centres. It is also possible to establish and head an own research group with an ERC grant.

Since 2007, more than 50 scientists have obtained ERC grants for Helmholtz. Many researchers highlight the scientific independence connected to the grant. Guido Grosse (p. 9), for example, says, “It offers a fantastic opportunity to build up a group of my own over an extended period of time and conduct independent research at this relatively early stage in my career.”

What does Helmholtz have to offer?
• Eighteen excellent research centres throughout Germany (p. 27)
• The opportunity to work on comprehensive solutions to the most significant societal challenges in six research fields
• Research on systems of great complexity with large-scale facilities and scientific infrastructure, in close cooperation with national and international partners
• Targeted talent management
• Individual advice and support for ERC grant proposals

The Helmholtz office in Brussels offers applicants, in collaboration with the ERC support offices at the Helmholtz centres, comprehensive support in the following areas:
• Advice and support during the application procedure and analyses of applications
• Interview coaching
• Legal and financial advice regarding ERC grants
• Support during contract preparations and project execution

SERVICES AND ADDITIONAL INFORMATION

<table>
<thead>
<tr>
<th>What?</th>
<th>For whom?</th>
<th>What level of funding?</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERC Starting Grants</td>
<td>For junior scientists (2–7 years post PhD)</td>
<td>Up to €2 million for a maximum of 5 years</td>
</tr>
<tr>
<td>ERC Consolidator Grants</td>
<td>For junior scientists (7–12 years post PhD)</td>
<td>Up to €2.75 million for a maximum of 5 years</td>
</tr>
<tr>
<td>ERC Advanced Grants</td>
<td>For experienced and excellent scientists</td>
<td>Up to €3.5 million for a maximum of 5 years</td>
</tr>
<tr>
<td>ERC Synergy Grants (No calls in 2014-2016)</td>
<td>For groups of two to four excellent scientists</td>
<td>Up to €15 million for a maximum of 6 years</td>
</tr>
<tr>
<td>ERC Proof of Concept</td>
<td>For grant holders only. Assessing the innovative potential of ideas and inventions from ERC projects.</td>
<td>Up to €150,000 for a maximum of 1.5 years</td>
</tr>
</tbody>
</table>

What? | For whom? | What level of funding? |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ERC Starting Grants</td>
<td>For junior scientists (2–7 years post PhD)</td>
<td>Up to €2 million for a maximum of 5 years</td>
</tr>
<tr>
<td>ERC Consolidator Grants</td>
<td>For junior scientists (7–12 years post PhD)</td>
<td>Up to €2.75 million for a maximum of 5 years</td>
</tr>
<tr>
<td>ERC Advanced Grants</td>
<td>For experienced and excellent scientists</td>
<td>Up to €3.5 million for a maximum of 5 years</td>
</tr>
<tr>
<td>ERC Synergy Grants (No calls in 2014-2016)</td>
<td>For groups of two to four excellent scientists</td>
<td>Up to €15 million for a maximum of 6 years</td>
</tr>
<tr>
<td>ERC Proof of Concept</td>
<td>For grant holders only. Assessing the innovative potential of ideas and inventions from ERC projects.</td>
<td>Up to €150,000 for a maximum of 1.5 years</td>
</tr>
</tbody>
</table>

ERC Starting Grants | For junior scientists (2–7 years post PhD) | Up to €2 million for a maximum of 5 years |
ERC Consolidator Grants	For junior scientists (7–12 years post PhD)	Up to €2.75 million for a maximum of 5 years
ERC Advanced Grants	For experienced and excellent scientists	Up to €3.5 million for a maximum of 5 years
ERC Synergy Grants (No calls in 2014-2016)	For groups of two to four excellent scientists	Up to €15 million for a maximum of 6 years
ERC Proof of Concept	For grant holders only. Assessing the innovative potential of ideas and inventions from ERC projects.	Up to €150,000 for a maximum of 1.5 years
Seizing the opportunity to pursue a research idea – what should I do next?
You have an excellent idea for research and would like to submit an application for an ERC grant at a Helmholtz centre? Please contact us or the Helmholtz centres if you would like to speak to our EU/ERC funding specialists.

Further information
www.helmholtz.de/erc
www.helmholtz.de/talentmanagement
ERC websites: erc.europa.eu