DIE STRATEGIE der Helmholtz-Gemeinschaft

Spitzenforschung für Gesellschaft, Wissenschaft und Wirtschaft
„Das Wissen allein ist aber nicht der Zweck des Menschen auf der Erde. [...] Nur das Handeln gibt ein würdiges Dasein; [...] also entweder die praktische Anwendung des Gewussten, oder die Vermehrung der Wissenschaft selbst muss der Zweck sein.“

Hermann von Helmholtz (1821 – 1894)
Liebe Leserinnen und Leser,

die Helmholtz-Gemeinschaft hat es sich zur Aufgabe gemacht, Antworten auf einige der großen Fragen zu finden, vor denen unsere Gesellschaft steht.

Auf den kommenden Seiten informieren wir Sie über die Schwerpunkte unserer Forschung sowie über unsere Vision für die Zukunft. Ich wünsche Ihnen eine anregende Lektüre.

Ihr Otmar D. Wiestler
Präsident der Helmholtz-Gemeinschaft
Die Helmholtz-Gemeinschaft leistet im deutschen wie im internationalen Wissenschaftssystem, einen unverzichtbaren Beitrag. Mit mehr als 39.000 Mitarbeitern in 18 Forschungszentren und einem Jahresbudget von rund 4,5 Milliarden Euro besitzt Helmholtz die kritische Masse, die großen Fragen unserer Zeit in einmaliger Weise durch Spitzenforschung anzugehen.

Die Forschung innerhalb der Helmholtz-Gemeinschaft gliedert sich in die sechs Forschungsbereiche: Energie, Erde und Umwelt, Gesundheit, Information (vormals: Schlüsseltechnologien), Materie sowie Luftfahrt, Raumfahrt und Verkehr.

DIE MISSION

- „Wir leisten Beiträge zur Lösung großer und dringender Fragen von Gesellschaft, Wissenschaft und Wirtschaft durch strategisch-programmatisch ausgerichtete Spitzenforschung in den Bereichen Energie, Erde und Umwelt, Gesundheit, Information (vormals: Schlüsseltechnologien), Materie sowie Luftfahrt, Raumfahrt und Verkehr.“

- „Wir erforschen Systeme hoher Komplexität unter Einsatz von Großgeräten und wissenschaftlichen Infrastrukturen gemeinsam mit nationalen und internationalen Partnern.“

- „Wir tragen bei zur Gestaltung unserer Zukunft durch Verbindung von Forschung und Technologieentwicklung mit innovativen Anwendungs- und Vorsorgeperspektiven.“

- „Wir gewinnen und fördern die besten Talente und bieten ihnen ein einmaliges wissenschaftliches Umfeld sowie nachhaltige Unterstützung in allen Entwicklungsphasen.“
Standorte der Helmholtz-Forschungszentren

1. BERLIN
 HELMHOLTZ-ZENTRUM BERLIN FÜR MATERIALIEN UND ENERGIE (HZB)
 www.helmholtz-berlin.de

2. BERLIN-BUCH
 MAX-DELBRÜCK-CENTRUM FÜR MOLEKULARE MEDIZIN IN DER HELMHOLTZ-GEMEINSCHAFT (MDC)
 www.mdc-berlin.de

3. BRAUNSCHWEIG
 HELMHOLTZ-ZENTRUM FÜR INFektIONSfORSCHUNG (HZI)
 www.helmholtz-hzi.de

4. BREMERHAVEN
 ALFRED-WEGENER-INSTITUT
 HELMHOLTZ-ZENTRUM FÜR POLAR- UND MEERESFORSCHUNG (AWI)
 www.awi.de

5. BONN
 DEUTSCHES ZENTRUM FÜR NEURODEGENERATIVE ERKRANKUNGEN (DZNE)
 www.dzne.de

6. DARMSTADT
 GSI HELMHOLTZZENTRUM FÜR SCHWERIONENFORSCHUNG
 www.gsi.de

7. DRESDEN
 HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF (HZDR)
 www.hzdr.de

8. GARCHING
 MAX-PLANCK-INSTITUT FÜR PLASMA-PHYSIK (IPP) (ASSoziiertES MITGLIED)
 www.ipp.mpg.de

9. GEESTHACTH
 HELMHOLTZ-ZENTRUM GEESTHACTH ZENTRUM FÜR MATERIAL- UND KÜSTENFORSCHUNG (HZG)
 www.hzg.de

10. HAMBURG
 DEUTSCHES ELEKTRONEN-SYNCHROTRON DESY
 www.desy.de

11. HEIDELBERG
 DEUTSCHES KREBSFORSCHUNGSZENTRUM (DKFZ)
 www.dkfz.de

12. JÜLICH
 FORSCHUNGSRUBRIUM JÜLICH
 www.fz-juelich.de

13. KARLSRUHE
 KARLSRUEHER INSTITUT FÜR TECHNOLOGIE (KIT)
 www.kit.edu

14. KIEL
 GEO MAR HELMHOLTZ-ZENTRUM FÜR OZEANFORSCHUNG KIEL
 www.geomar.de

15. KÖLN
 DEUTSCHES ZENTRUM FÜR LUFT- UND RAUMFAHRT (DLR)
 www.dlr.de

16. LEIPZIG
 HELMHOLTZ-ZENTRUM FÜR UMWELTFORSCHUNG – UFZ
 www.ufz.de

17. MÜNCHEN
 HELMHOLTZ ZENTRUM MÜNCHEN – DEUTSCHES FORSCHUNGszENTRUM FÜR GESUNDHEIT UND UMWELT
 www.helmholtz-muenchen.de

18. POTSDAM
 HELMHOLTZ-ZENTRUM POTSDAM – DEUTSCHES GEOFORSCHUNGszENTRUM GFZ
 www.gfz-potsdam.de
DIE HELMHOLTZ-GEMEINSCHAFT

Um die Welt besser zu verstehen und langfristig dazu beizutragen, die Lebensgrundlage des Menschen zu erhalten, braucht es neben herausragenden Mitarbeiterinnen und Mitarbeitern, interaktiven Netzwerken und einzigartigen Infrastrukturen zudem den Mut, neue Ideen zu entwickeln und zu verfolgen. Die Helmholtz-Gemeinschaft wird immer breiten Raum für solche kreativen Ideen lassen, denn um Antworten auf die großen Fragen zu finden, muss man vor allem eines tun: Neue Wege beschreiten.
ENERGIE

Im Forschungsbereich Energie arbeiten Helmholtz-Wissenschaftlerinnen und -Wissenschaftler daran, Lösungen für die Energieversorgung von morgen zu entwickeln, die ökonomisch, ökologisch und gesellschaftlich tragbar sind.
Die Herausforderungen

Die Strategie

Damit die Energiewende gelingt, müssen systemische und sektorenübergreifende Forschungs- und Entwicklungsansätze verfolgt werden. Es ist dabei wichtig, sämtliche relevante Energieketten einzubeziehen und innovative technologische Optionen für eine sichere, bezahlbare und nachhaltige Energieversorgung zu entwickeln. Die Helmholtz-Gemeinschaft ist dank ihrer Systemkompetenz prädestiniert dafür, eine Vorreiterrolle bei der Umwandlung des Energiesystems zu spielen.

In den nächsten Jahren bilden die Entwicklung intelligenter Energiesysteme sowie die Erforschung zentraler Technologien zur Energiebereitstellung, -umwandlung und -speicherung die Kernelemente der Forschungsstrategie. Die Erforschung der Kernfusion als potenzielle künftige Primärenergiequelle und der sichere nukleare Rückbau sowie die Zwischen- und Endlagerung sind weitere zentrale Aufgaben und Schwerpunkte des Bereichs.

Diese Schwerpunkthemen werden in enger Vernetzung der acht am Forschungsbereich beteiligten Zentren und in Kooperation mit Partnern aus der Wirtschaft entlang der gesamten Innovationskette vorangetrieben. Um die Energiewende erfolgreich zu gestalten, müssen darüber hinaus auch sozioökonomische Aspekte und Fragen zur gesellschaftlichen Partizipation von Beginn an mit eingebunden werden. Dies gelingt nur, wenn Partner aus der Industrie, Politik, Zivilgesellschaft und Forschung gemeinsam daran arbeiten.

Maßnahmen

Energiesystemintegration

Energy Lab 2.0 & Living Lab Energy Campus
ERDE UND UMWELT

Die Herausforderungen

Die natürlichen Lebensgrundlagen unseres Planeten Erde zu erhalten und nachhaltig zu entwickeln, ist eine ständig wachsende Herausforderung für Politik, Wirtschaft und Gesellschaft. Dabei kommt der integrierten Erforschung der Erde mit ihren Landgebieten, Meeren, Ozeanen und Polarregionen eine zentrale Bedeutung zu. Sie ist die Voraussetzung, um Handlungsoptionen für politische und gesellschaftliche Entscheidungen ableiten zu können.

Die Strategie

Im Vordergrund der Aktivitäten des Forschungsbereiches stehen die Untersuchung der Ursachen und Wirkungen des globalen Wandels, die Entwicklung hin zu einer nachhaltigen Ressourcennutzung sowie zur Erforschung der Ursachen und Risiken von Naturgefahren und der Veränderungen verschiedener Ökosysteme. Durch ihr erhöhtes Engagement in den Bereichen Wissens- und Technologietransfer werden die beteiligten Zentren der Helmholtz-Gemeinschaft noch stärker zu Entscheidungsprozessen rund um den Themenkomplex Erde und Umwelt beitragen. Insgesamt geht es darum, die Prognosefähigkeit zu schärfen, die eine wichtige Grundlage für evidenzbasierte politisch-gesellschaftliche Entscheidungen schafft.

Maßnahmen (Auswahl)

Modular Observation Solutions for Earth Systems (MOSES)
MOSES ist eine gemeinsame Initiative von AWI, DLR, Forschungszentrum Jülich, GEOMAR, GFZ, HMGU, HZG, KIT und UFZ mit dem Schwerpunkt „Erdbewachtung“. Ziel ist es, Daten zu dynamischen Naturereignissen kontinuierlich zu erheben und damit deren Bedeutung für die langfristige Entwicklung von Erd- und Ökosystemen zu erforschen. Hierzu werden modulare und mobile Observationseinheiten in Kombination mit operativen Satelliten genutzt, um plötzliche dynamische Ereignisse, die zumeist auf geringer zeitlicher und räumlicher Skala ablaufen, zu erfassen.

Erdsystemmodellierung (ESM)
GESUNDHEIT

Die Herausforderungen

Häufige Volkskrankheiten wie Krebs, Demenz, Diabetes, Herz-Kreislauferkrankungen, Infektionen, Allergien und Erkrankungen der Lunge stellen eine immer stärkere Belastung sowohl für die Betroffenen als auch für die Gesellschaft dar. Diese Belastung zu verringern, ist die große Herausforderung in der Gesundheitsforschung.

Die Strategie

Eine weitere Herausforderung ist die Erschließung großer, neuer Themenbereiche im Portfolio der Gesundheitszentren, beispielsweise psychische Erkrankungen. Im Fokus steht dabei stets der gesellschaftliche Nutzen, weshalb auch der Transfer von Wissen, z.B. im Rahmen von Informationsdiensten ein Eckpfeiler der Gesundheitsforschung bei Helmholtz ist.

Maßnahmen (Auswahl)

Personalisierte Medizin

Immunologie und Inflammation
Mit den wissenschaftlichen Durchbrüchen der letzten Dekade hat sich die Immunologie zu einem Treiber für bahnbrechende Therapien entwickelt. Gleichzeitig wurde die Rolle des Immunsystems als Dreh- und Angelpunkt in der Pathogenese zahlreicher Volkskrankheiten belegt. Durch die Verknüpfung und Stärkung der immunologischen Expertise möchte sich Helmholtz national als wichtiger Akteur auf diesem Gebiet positionieren und seine internationale Sichtbarkeit weiter erhöhen.
Mobilität, Information, Kommunikation, Ressourcenmanagement sowie Umwelt und Sicherheit sind entscheidende Faktoren für die ökonomische, ökologische und gesellschaftliche Entwicklung einer modernen Volkswirtschaft.
Die Herausforderungen

In allen drei Bereichen – Luftfahrt, Raumfahrt, Verkehr – geht es dabei vor allem darum, technische Errungenschaften im Einklang mit dem gesellschaftlichen Nutzen und Bedarf umzusetzen.

Die Strategie

Um eine bedarfsgerechte und nachhaltige Mobilität zu realisieren, muss die gesellschaftliche Komponente in die Forschungsaktivitäten einfließen. Gerade im Bereich des autonomen Fahrens wird dieser Faktor entscheidend für Erfolg oder Misserfolg sein.

Neue Auswertungsverfahren für die Raumfahrt

Bis Ende 2017 generierten die Satellitenmissionen Sentinel-1, -2 und -3 des europäischen Copernicus-Programms ein tägliches Datenvolumen von mehr als 20 Terabyte. Um diese Datenmengen zu bündeln, haben Wissenschaftler am Earth Observation Center (EOC) des DLR einen TimeScan-Prozessor entwickelt.

Elektrisches Passagierflugzeug

DLR-Forscher haben den Antriebsstrang des weltweit ersten viersitzigen Passagierflugzeuges, das allein mit einem Wasserstoffbrennstoffzellen-Batterie-System angetrieben wird, entwickelt. Im Verbund mit Industrie und Hochschulen ist das nächste Ziel die Entwicklung eines hybrid-elektrischen 19-Sitzers.

Ganzheitliche Konzepte für den Güterverkehr

MATERIE

Die Bestandteile der Materie und die zwischen ihnen wirkenden Kräfte werden über viele Größenordnungen hinweg erforscht – von Elementarteilchen bis hin zu makroskopischen Strukturen im Universum.
Die Herausforderungen

Fokus der eng vernetzten, disziplinübergreifenden Zusammenarbeit im Forschungsbereich Materie ist die Entschlüsselung der Struktur und Funktion von Materie, Materialien und biologischen Systemen bis hinunter auf die Quantenebene. Entsprechend erstrecken sich die Forschungsaktivitäten von der Erforschung des Quanten-Universums bis zum Design von neuen Materialien und Wirkstoffen. Dafür nutzen und betreiben die Helmholtz-Zentren im Forschungsbereich ein einzigartiges Portfolio an Forschungsinfrastrukturen.

Die Herausforderung besteht in der zunehmend höheren Granularität und Komplexität der Untersuchungsgegenstände bzw. der damit verbundenen Fragestellungen, deren Bearbeitung ganz neue interdisziplinäre Ansätze verlangt. Übergreifende Aspekte zum Themenkontext Information und Big Data, der Materialforschung, aber auch der Strukturbiologie sollen künftig verstärkt aufgegriffen werden.

Die Strategie

Das wissenschaftliche Portfolio im Forschungsbereich Materie reicht von der Elementarteilchenphysik und der Astroteilchenphysik über die Hadronen- und Kernphysik bis hin zur Festkörper-, Atom-, Plasma-, Molekül- und Biophysik.

Die Technologieentwicklung auf den Gebieten der Beschleuniger- und Detektorphysik wie der Informationstechnologie bildet eine wesentliche Grundlage für die Fortentwicklung des wissenschaftlich-technischen Instrumentariums im Forschungsbereich.

Maßnahmen (Auswahl)

BESSY-VSR und das Joint Lab for Electrochemical Interfaces (BelChem) in Berlin
Das HZB avisiert den Umbau der Synchrotron-Anlage BESSY II für variable Pulslängen, um beispielsweise im Verbund mit dem Berlin Joint Lab on Electrochemical Interfaces (BelChem) elektrochemische Prozesse an Grenzflächen besser zu erforschen.

PETRA IV und die Hochbrillanz-Synchrotronstrahlung
Am DESY wird der Umbau von PETRA III in einen ultimativen diffractionslimitierten Speicherring geplant. Damit ließe sich zum ersten Mal ein beugungsbegrenztes dreidimensionales Röntgenmikroskop für die Material- und Wirkstoffforschung realisieren.

Hochleistungsionenbeschleuniger am ELBE
Am HZDR wiederum wird der Ausbau der Strahlungsquelle ELBE zu einer einzigartigen beschleuniger- und laserbasierten Quelle für synchronisierte, hochintensive Strahlungspulse mit hoher Wiederholrate geplant, um u.a. stärkste THz-Felder bei hoher und flexibler Repetitionsrate zu erzeugen, was neue Forschungsmöglichkeiten auf dem Gebiet der Chemie von Festkörperoberflächen und der Strukturanalyse bioanorganischer Komplexe von Elementen ermöglicht.
INFORMATION (vormals: Schlüsseltechnologien)

Informationsorientierte Forschung wird immer wichtiger im Hinblick auf die Digitalisierung von Wissenschaft, Wirtschaft und Gesellschaft. Mit ganzheitlicher Forschung zu konzeptionellen, technischen und soziologischen Aspekten des Themas Information richtet sich Helmholtz auf diese Entwicklung aus.
Die Herausforderungen

Die Strategie

Maßnahmen (Auswahl)

Neue Computing Konzepte

Virtuelles Materialdesign

Der Inkubator Information & Data Science

- ein agiler und innovativer Kreis hochkarätiger Fachleute und eine Plattform zur Vernetzung wichtiger Multiplikatoren, um attraktive Themen in die Gemeinschaft zu tragen und langfristig weiterzudenken;

- ein Forum für einmalige und neue Ideen sowie ein Nukleus für wegweisende und disruptive Pilotprojekte;

- ein Think Tank für neue Impulse zur Weiterentwicklung des Forschungsportfolios und der Strukturen der Helmholtz-Gemeinschaft.

Der Inkubator wird die Ziele der Gemeinschaft im Feld Information & Data Science adressieren und dabei einerseits Verfahren entwickeln, mit denen kontinuierlich und nachhaltig spannende, hochaktuelle und innovative Themen erschlossen und in die Bearbeitung gebracht werden und andererseits die erfolgreiche Besetzung von großskaligen Forschungsthemen vorantreiben, in denen Helmholtz national und international führend ist bzw. werden kann.

Darüber hinaus entwickelt der Inkubator schlagkräftige Konzepte und Handlungsoptionen in den hochrelevanten Feldern Maschinelles Lernen & Künstliche Intelligenz, Bildererkennung und -verarbeitung sowie enge Verzahnung von Forschungsdaten und Forschungsdateninfrastrukturen. Es ist unser erklärtes Ziel, Plattformen zu etablieren, die die Schlagkraft der gesamten Helmholtz-Gemeinschaft in diesen Kerntechnologien signifikant steigern, aber auch Angebote und Anknüpfungspunkte für nationale und internationale Partner bieten.

Die Gemeinschaft wird sich als gestaltender Akteur auf diesem Forschungsfeld der Zukunft positionieren, die bereits bestehenden Kompetenzen weiter stärken und so einen Beitrag dazu leisten, die deutsche Wissenschaft auf dem Feld Information & Data Science in eine internationale Spitzenposition zu bringen und zu halten.
Zielgruppengerechte Angebote auf allen Karrierestufen anbieten, akademische Förderung mit klaren Karriereperspektiven verbinden, Professionalisierung des Managements auf allen Ebenen vorantreiben – das sind die Kernelemente der Helmholtz-Talent-Management-Strategie.

Für das Helmholtz-Talent-Management lassen sich im Wesentlichen zwei Ziele hervorheben:

1. Rekrutierung – die Besten für die Helmholtz-Gemeinschaft gewinnen
 Schlüsselpositionen sollen optimal besetzt werden – entweder durch die externe Rekrutierung herausragender Köpfe oder durch die interne Weiterentwicklung talentierter Mitarbeiterinnen und Mitarbeiter.

2. Karriere- und Laufbahnunterstützung – den Besten optimale Unterstützung für ihre weitere Entwicklung geben
 Talente sollen optimal in ihrer Karriere unterstützt werden, so dass sie hervorragende Startpositionen für Tätigkeiten außerhalb der Helmholtz-Gemeinschaft haben oder wichtige Positionen in Helmholtz-Zentren übernehmen können. Helmholtz bietet ihnen Karriereorientierung und Laufbahnunterstützung durch trans-
parente Karrierewege sowie Instrumente der Personalausbildung. Um diese Ziele zu erreichen, umfasst das Talent-Management drei Dimensionen:

I. AKADEMISCHE FÖRDERUNG
Die Förderung des wissenschaftlichen Nachwuchses umfasst mittlerweile Instrumente auf allen Karrierestufen:

- Doktorandenförderung in Graduiertenschulen und Kollegs, den Doktorandenpreis sowie in Zukunft internationale Helmholtz-Kollegs
- Nachwuchsgruppen mit erweiterten Maßnahmen zur Flexibilisierung der Familienphase und der besseren Vereinbarkeit von Familie und Beruf als Förderung auf dem Weg zur Berufung
- Förderung der Rekrutierung durch das W2/W3-Programm für exzellente Wissenschaftlerinnen und die Rekrutierungsinitiative auf W3-Niveau
- Förderung von erfahrenen Forscherinnen und Forschern durch den Helmholtz-ERC Recognition Award und die Helmholtz International Fellowships

II. MANAGEMENT-AUSBILDUNG
Die Qualifizierung für Management- und Führungsaufgaben setzt einen Akzent auf die Weiterentwicklung der Helmholtz-Akademie mit ihren Dienstleistungen für die Gemeinschaft und das Wissenschaftssystem.

III. KARRIEREGERATUNG UND LAUFBAHNENTWICKLUNG

Helmholtz-Akademie für Führungskräfte

Um auch weiter aktiv zur Problemlösung beizutragen, hat es sich Helmholtz zum Ziel gesetzt, mit den besten wissenschaftlichen Partnern zu kooperieren. Dabei wird eine gezielte Verbindung unterschiedlicher Expertisen und Infrastrukturen angestrebt.

Die Gemeinschaft hat hierfür vier Ziele formuliert:

1. Durch Kooperationen zum Aufbau von Spitzenstandorten beitragen
Dank ihrer kritischen Masse an klugen Köpfen, finanziellen Mitteln und Infrastrukturen sollen diese Spitzenstandorte gemeinsam große, aktuelle Forschungsthemen bearbeiten. So soll im lokalen Verbund universitärer und außeruniversitärer Forschungseinrichtungen international mehr Sichtbarkeit erzielt und die Anziehungskraft für zukünftige Rekrutierungen gestärkt werden.

Beispiele:
KIT – Spitzenstandort für Technologie:

Wissenschaftspark auf dem DESY-Campus
In der Metropolregion Hamburg soll der DESY-Campus Bahrenfeld zu einem internationalen Wissenschaftspark ausgebaut werden. Beteiligt sind der europäische Röntgenlaser XFEL, die Universität Hamburg, das European Molecular Biology Laboratory (EMBL) und die Max-Planck-Gesellschaft. Ziel des Spitzenstandorts sind die gemeinsame Nutzung von Infrastruktur, der Aufbau eines Nachwuchsprogramms, gemeinsame Berufungen und die Verfolgung einer übergreifenden Innovationsstrategie.

2. Themen von nationaler Bedeutung durch gezielte und sichtbare Kooperationen der wichtigsten nationalen Partner gemeinsam bearbeiten
Große, interdisziplinäre, nationale Konsortien sollen schnellere Ergebnisse und Anwendungen in der Praxis ermöglichen, um aktuellen gesellschaftlichen Herausforderungen zu begegnen.

Beispiele:
Die Deutschen Zentren der Gesundheitsforschung (DZG)
Als erstes von heute sechs DZG wurde 2009 das Deutsche Zentrum für neurodegenerative Erkrankungen (DZNE) eröffnet: Es war der Vorreiter für ein neues Modell der institutionellen Zusammenarbeit, bei dem ein Helmholtz-Zentrum mit Universitätskliniken und weiteren Partnern verbunden wird, um die Vorbeugung, Diagnose und Behandlung bestimmter Volkskrankheiten zu verbessern. Mittlerweile gibt es deutschlandweit sechs DZG, die sich außer den neurodegenerativen Erkrankungen auch den Themen Diabetes, Infektionsforschung, Translationale Krebs-
forschung, Lungenforschung und Herz-Kreislauf-Erkrankungen widmen. An insgesamt mehr als 90 Standorten arbeiten in den DZG über 100 beteiligte Partnerinstitutionen zusammen, um Forschungsergebnisse schneller zur Anwendung am Patienten zu bringen.

Deutsche Allianz für Meeresforschung (DAM)

3. Die Forschungsportfolios einzelner Zentren durch gezielte Kooperation auf ausgewählten Gebieten ergänzen und stärken

Zu diesem Zweck werden Außenstellen eines Helmholtz-Zentrums auf dem Campus einer Universität gegründet. Durch diese sogenannten Helmholtz-Institute entsteht die Grundlage für eine dauerhafte enge Zusammenarbeit.

Derzeit bestehen bereits sieben solcher Institute:
- Helmholtz-Institut Erlangen-Nürnberg
- Helmholtz-Institut Freiberg
- Helmholtz-Institut für Pharmazeutische Forschung Saarland
- Helmholtz-Institut Jena
- Helmholtz-Institut Mainz
- Helmholtz-Institut Münster
- Helmholtz-Institut Ulm

2016 hat die Gemeinschaft beschlossen, vier neue Helmholtz-Institute ins Leben zu rufen:
- **HIRI:** Helmholtz-Institut für RNA-basierte Infektionsforschung (HIZ und Julius-Maximilians-Universität Würzburg)
- **HIFMb:** Helmholtz-Institut für Funktionelle Marine Biodiversität (AWI und Carl von Ossietzky Universität Oldenburg)

HI-MAG: Helmholtz-Institut für Metabolismus-, Adipositas- und Gefäßforschung (HMGU und Universität Leipzig)

HI-TRON: Helmholtz-Institut für Translationale Onkologie (DKFZ, Johannes Gutenberg-Universität Mainz und Universitätsmedizin Mainz)

4. Große Forschungsinfrastrukturen gezielt für attraktive neue Kooperationen und Anwendungsmöglichkeiten nutzen

Beispiele:
Forschungsflugzeug HALO
Das DLR-Flugzeug HALO (High Altitude and Long Range Research Aircraft) bietet eine ideale Kombination aus Reichweite, Flughöhe, Nutzlast und umfangreicher Instrumentierung. HALO macht das Flugzeug zu einer weltweit einzigartigen Forschungsplattform. Im Frühjahr 2012 hob das Forschungsflugzeug zu seiner ersten wissenschaftlichen Mission ab und ermöglicht seitdem faszinierende Experimente, indem es die Lücke zwischen erdgebundenen Beobachtungsstationen und Satelliten schließt. Das Betriebskonzept ist offen für eine breite Nutzergemeinschaft und hat daher neue Dimensionen in der Umweltforschung, Klimaforschung und Erdbeobachtung in Deutschland und Europa eröffnet.

„Helmholtz Energy Materials Foundry“

Mit ihrer internationalen Zusammenarbeit leistet die Helmholtz-Gemeinschaft einen wichtigen Beitrag zur Stärkung des Wissenschaftsstandorts Deutschland und seiner Wettbewerbsfähigkeit.

Internationalisierung ist deshalb ein zentraler Teil der Agenda des Präsidenten für die Jahre 2016 bis 2020 – und hat vier konkrete strategische Ziele:

1. Internationale strategische Partnerschaften ausbauen

Ein Beispiel dafür ist das Weizmann-Helmholtz Lab (WHELMI) in Israel, das gemeinsam mit dem dortigen Weizmann Institute of Science und dem HZDR gegründet wurde. Länder, in denen die Gemeinschaft seit langem intensiv und erfolgreich mit exzellenten Partnereinrichtungen kooperiert, sind beispielsweise die USA, Kanada, Frankreich, das Vereinigte Königreich und China.

In diesem Kontext wird Israel eine besondere Bedeutung zuteil werden. Um die Kooperation mit dieser herausragenden Forschungsnation zu stärken und

2. Gemeinsame Spitzenforschung auf europäischer Ebene
Um globale Herausforderungen der Gesellschaft, Wissenschaft und Wirtschaft wirksam zu lösen, engagiert sich die Helmholtz-Gemeinschaft aktiv und erfolgreich in europäischen Partnern. Mit innovativen Ideen und dem Einsatz ihrer leistungsfähigen Infrastrukturen stärkt sie die Kohäsion des europäischen Forschungsraums.

3. Talente aus aller Welt gewinnen
Die Helmholtz-Gemeinschaft positioniert sich als hochattraktiver Kooperationspartner und Arbeitgeber für Talente und Spitzenforschende aus aller Welt, insbesondere für herausragende Wissenschaftlerinnen.

4. Science Diplomacy – mit Forschung Brücken bauen
Die Helmholtz-Gemeinschaft setzt sich nachdrücklich für leistungsfähige Wissenschaftssysteme und für die Erhaltung der wissenschaftlichen Freiheit ein, auch und vor allem in der internationalen Zusammenarbeit.

Ein Beispiel hierfür ist das SESAME-Projekt („Synchrotron-light for Experimental Science and Applications in the Middle East“). SESAME ist eine Synchrotron-Anlage in Jordanien, die unter anderem aus ehemaligen Komponenten des Speicherrings BESSY I aufgebaut und im Mai 2017 eingeweiht wurde. Die Anlage stellt die erste ihrer Art im Nahen Osten dar. Für Bau und Betrieb haben sich unter der Schirmherrschaft der UNESCO die Länder Ägypten, Bahrain, Iran, Israel, Jordanien, Pakistan, die Palästinensischen Autonomiegebiete, die Türkei und Zypern zusammengefunden. Damit hat die Anlage neben der Erfüllung ihrer wissenschaftlichen Aufgaben auch die Völkerverständigung im Nahen Osten zum Ziel. Seitens der Helmholtz-Zentren engagiert sich vor allem DESY im SESAME-Projekt.
innovAtion unD trAnSfer

Die Helmholtz-Gemeinschaft wird ihr Profil als herausragende Forschungsorganisation im Wissens- und Technologietransfer weiter schärfen und sich als wichtiger Partner im Innovationsgeschehen etablieren.

1. Entwicklungspartnerschaften und Kooperationen mit der Wirtschaft forciern

In den kommenden Jahren werden mit Mitteln aus dem IVF insbesondere Entwicklungspartnerschaften, also frühe strategische Allianzen zwischen Helmholtz-Zentren und komplementären Partnern aus der Wirtschaft, forciert. Diese langfristigen Kooperationsmodelle passen optimal zur hohen Systemkompetenz entlang der Innovationskette, die Helmholtz auszeichnet.

2. Eine führende Position im Benchmarking relevanter Transferkennzahlen einnehmen
Sowohl international als auch national kann sich Helmholtz mit Blick auf Förderinstrumente, Aktivitäten und Erfolge im Transfer sehen lassen, die Entwicklung der klassischen Technologietransfer-Kennzahlen spiegelt dies allerdings nicht komplett wieder. Es wird daher angestrebt, neue relevante Kennzahlen und qualitative Kriterien zu etablieren, um den Transfererfolg besser abbilden zu können. Dennoch bleibt es ein Ziel, die
Kennzahlen bei Ausgründungen, bei Anzahl, Qualität und Einnahmen von Kooperationen mit Unternehmen sowie Lizenz Erlösen zu steigern. Dazu wurden in den letzten Jahren bereits Instrumente wie der Helmholtz-Validierungsfonds, die Helmholtz Innovation Labs oder die Innovationsfonds der Zentren eingerichtet.

3. Optimale Rahmenbedingungen für den Transfer schaffen und die Innovationskultur stärken

4. Austausch mit Wirtschaft und Gesellschaft als elementaren Teil der Helmholtz-Mission wahrnehmen

In den kommenden Jahren werden wir nicht nur Austauschformate und Transferkanäle, sondern auch Anreizsysteme im Hinblick auf Wirtschaft und Gesellschaft optimieren. Dazu gehört die Prüfung der Begutachtungs- und Mittelvergabe verfahren. So wird die Entwicklung einer Wissenstransfer-Indikatorik, die Transferspekte stärker als bisher berücksichtigt, zu den kommenden nächsten Schritten gehören.

5. Wissenstransfer stärken und neue Formate zur Interaktion und Partizipation nutzen
Bereits jetzt wird Wissenstransfer durch Helmholtz-Forscher oder institutionelle Formate der Zentren betrieben: Es gibt unter anderem Gesundheitsinformationsdienste, Austauschplattformen und Datenportale oder Schülerlabore an fast allen Helmholtz-Zentren.

Mit einer exzellenten Grundlagenforschung, innovativen und interdisziplinären Ansätzen sowie hohem Transfer-Potenzial verfügt Helmholtz über eine ausgeprägte Systemkompetenz. Diese gilt es an den großen Herausforderungen von Wissenschaft, Gesellschaft und Wirtschaft strategisch auszurichten.

Durch die Bündelung der vielfältigen Beiträge unterschiedlicher Forschungszentren ist Helmholtz in einzigartiger Weise in der Lage, nicht nur Lösungen für Einzelfragen anzubieten, sondern komplexe Fragestellungen aus Wissenschaft, Gesellschaft und Wirtschaft ganzheitlich zu beantworten und Systemlösungen zu entwickeln. Den sechs Forschungsbereichen kommt dabei die wichtige Aufgabe zu, richtungsweisende Forschungsfelder der Zukunft zu gestalten, gemeinsam mit den besten Partnern Systemlösungen zu erarbeiten, und einen erheblichen Impact auf die relevanten Gebiete zu entfalten.

Programmorientierte Förderung

Gegenstand der strategischen Bewertung sind die entlang der forschungspolitischen Ziele erstellten Programmvorschläge für die kommende Förderperiode. Inwieweit adressieren sie die kommenden Herausforderungen, formulieren Ziele zu deren Lösung und zeigen Wege zum Erreichen dieser Ziele auf? Wie bringen die Zentren ihre Kompetenzen zusammen und nehmen dabei die Empfehlungen der wissenschaftlichen Begutachtung auf? Und welches ist der Beitrag eines Programms zur Umsetzung der Strategie des Forschungsbereichs?

Modernes Forschungsmanagement

Aus den besonderen Aufgaben und Zielen der Helmholtz-Gemeinschaft ergeben sich höchste Anforderungen an das Wissenschafts-Management. Häufig nehmen die Zentren die Rolle von Pionieren ein, wenn auf technischer, organisatorischer, finanzieller oder rechtlicher Ebene Neuland betreten werden muss, das der deutschen Wissenschaftslandschaft Spielräume eröffnet. Dies geschieht auf unterschiedlichen Ebenen:

- Die Helmholtz-Gemeinschaft baut neue Großgeräte wie den Röntgenlaser XFEL, die in dieser Form noch nie zuvor konstruiert wurden.

- Gemeinsam mit den Universitäten wurden neue und sehr erfolgreiche Kooperationsformen wie die Helmholtz-Institute entwickelt, um Brücken zwischen universitärer und außeruniversitärer Forschung zu schlagen.

Diese Leistungen sind in den meisten Fällen das Werk großer Teams, die wissenschaftliche und administrative Expertise verbinden. Um dies zu ermöglichen, setzt die Helmholtz-Gemeinschaft seit ihrer Gründung auf einen entscheidenden Faktor: ein Bekenntnis zu modernem Forschungsmanagement. In ihren Statuten spiegelt sich dieser Auftrag wider:

„**Aufgrund der Mission der Helmholtz-Gemeinschaft müssen auch ihre technisch-administrativen Mitarbeiterinnen und Mitarbeiter hohen Ansprüchen genügen. [...] Für höhere Karrierestufen im wissenschaftlichen wie im technisch-administrativen Bereich ist die Förderung von professioneller Führung und Managementfähigkeiten ein Schwerpunkt der Helmholtz-Gemeinschaft.**“

Ziel ist es, dass die Wissenschaftsmanagerinnen und -manager an den Zentren und in der Geschäftsstelle folgende Qualitäten mitbringen:

- einen hohen Grad der Professionalisierung und Spezialisierung
- eine besondere Nähe zur Wissenschaft
- umfangreiche Management-Fähigkeiten
- vertiefte Kenntnisse der deutschen Wissenschaftslandschaft
- kaufmännischer und organisatorischer Sachverstand

Das wichtigste Instrument, um diese Qualifikationen zu vermitteln, ist die Helmholtz-Akademie für Führungskräfte (siehe S. 25). Sie richtet sich an alle Mitarbeiterinnen und Mitarbeiter, die in Wissenschaft und Administration Führungs- und Koordinierungsaufgaben übernehmen. Mit ihrem umfänglichen Programm ermöglicht die Akademie eine Professionalisierung des Managements auf allen Ebenen.

Mit Hilfe der Fähigkeiten, die sie im Rahmen der Akademie erwerben, machen diese Menschen die komplexe Spitzenforschung erst möglich, für die die Helmholtz-Gemeinschaft steht.
Forschungsinfrastrukturen

Die Priorisierung von Projekten muss auf der Grundlage einer wissenschafts- und forschungsgetriebenen Analyse erfolgen und die Betrachtung der gesellschaftlichen Relevanz einschließen. Eine Herausforderung hierbei besteht darin, dass die Vorschläge und Anträge für neue Infrastrukturen aus sehr unterschiedlichen Fachrichtungen stammen und schwer miteinander zu vergleichen sind. Doch nur so können die Infrastrukturen identifiziert werden, die langfristig exzellente Wissenschaft ermöglichen und zur Beantwortung der großen Fragen unserer Gesellschaft beitragen.