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Distributed energy supply systems are most efficiently designed by mathematical optimization. However, 

optimization models often assume availability of all components at any time. In practice, security of en- 

ergy supply is crucial; thus, reliability is mandatory but often neglected in optimization and only imple- 

mented subsequently employing expensive rules of thumb. 

In this work, we propose an exact optimization approach to identify ( n − 1 )-reliable designs for energy 

systems. The approach guarantees energy supply during the failure of 1 component at any time and is 

independent of probabilities and the selection of scenarios. ( n − 1 )-reliability is also necessary to allow 

for maintenance of components. For problems with high computational effort, we propose the inexact but 

computationally efficient ( n − 1 max )-reliability approach which also guarantees energy supply but allows 

overproduction. A real-world case study shows that both approaches identify reliable designs at only a 

small increase of the total annualized costs compared to the unreliable base case. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

For the design of distributed energy supply systems

DESS), mathematical optimization is a highly suitable tool

 Frangopoulos et al., 2002 ). However, the design depends on

any input parameters which are inherently uncertain, such

s future energy demands or prices. In the last years, uncer-

ainty of input data has been considered by applying robust

ptimization to unit commitment problems ( Bertsimas et al.,

013 ), in the optimal design of energy systems ( Akbari et al.,

014; Dong et al., 2013; Majewski et al., 2017a; 2017b; Moret

t al., 2014 ), and in process system engineering (for a review see

rossmann et al., 2016 ). Recently, in process engineering, Gong and

ou (2017) have proposed a multi-objective two-stage adaptive

obust model allowing to optimize resilience and economic ob-

ectives simultaneously. To reduce conservatism and to improve

he performance of (minmax) robust optimization ( Soyster, 1973 ),

uzman et al. (2016, 2017) propose a priori and a posteriori

ounds for uncertain parameters with unknown and attributed

nown distributions. Ning and You (2017) extract probability
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istributions from uncertainty data to avoid over-conservatism.

musat et al. (2017) quantify stochastically the effect of uncertain

eather data on the design of renewable energy systems. 

However, not only input parameters are uncertain but also the

vailability of components is uncertain ( Aguilar et al., 2008 ). If a

omponent fails and is not available, the energy demand has to be

overed by the remaining components of the system. If the remain-

ng energy system is not able to supply the demanded amount of

nergy, it is not reliable. In literature, reliability is defined as the

robability that a system is able to provide a required function;

vailability describes the probability that an item delivers its re-

uired function during a certain time period ( Aguilar et al., 2008 ).

ince a lack of energy supply can only be avoided with certainty if

he reliability of the system is 100 %, we regard a system with 100

 reliability as a reliable system in this paper. 

In practice, reliability is often aimed for by heuristic rules

f thumb where additional units are added ( Aguilar et al.,

008 ). Heuristics usually result in a suboptimal design since

he additional components are not part of the optimization

 Andiappan et al., 2015 ). Therefore, developing mathematical con-

epts for reliability is an important research area. 

For this purpose, several stochastic optimization approaches

ave been proposed to identify reliable designs. Sun and

iu (2015) propose a multi-period stochastic programming ap-

roach to design steam power systems. They take into account

oth uncertain availability of components and uncertain demands
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to aim for reliable and robust energy systems. Frangopoulos and

Dimopoulos (2004) show the effect of failing components on

the design of the system and the operation of the compo-

nents. They employ the state-space method (for a brief intro-

duction see Frangopoulos and Dimopoulos, 2004 ) to simulate

partial failure of the system. Also based on the state-space method,

Miryousefi Aval et al. (2015) use a two-state Markov model to

design reliable building cooling, heating, and power systems and

analyze the system’s impact on the existing electrical power sys-

tem. Abdollahzadeh and Atashgar (2017) propose a bi-objective

two-stage stochastic programming model to obtain an optimal de-

sign, a maintenance strategy, and inspection intervals for supplier

systems (e. g., for a wind farm). For this purpose, they mini-

mize the system life-cycle costs and maximize the system avail-

ability. Costs and reliability of the system are also optimized by

Jahromi and Feizabadi (2017) to solve the redundancy allocation

problem ( Barlow et al., 1965 ) with the aim of installing parallel re-

dundant components. They use a gamma distribution to describe

component reliability. A similar trade-off between costs and avail-

ability is considered by Ye et al. (2017) . Their proposed mixed in-

teger nonlinear programming model selects the optimal design of

a reliable serial system comprising parallel components. The avail-

ability of the considered chemical process units is also described

via probabilities. Andiappan et al. (2015) propose an approach

based on k -out-of- n system modeling ( Birnbaum, 1968 ) to find re-

liable biomass-based tri-generation systems. They determine re-

dundancy allocation of process units with specified minimum reli-

ability level using chance-constraint programming. Andiappan and

Ng (2016) extend this k -out-of- n approach employing a generic

formulation to incorporate operation strategies for the design of

reliable tri-generation systems. However, employing stochastic ap-

proaches might lead to a lack of energy supply since probabilities

are regarded in the optimization. Thus, stochastic approaches do

not lead to a reliable system with 100 % reliability. 

To avoid stochastic approaches, scenario-based analysis has

been considered: Andiappan et al. (2017) have recently proposed a

mixed-integer linear program to analyze the effects of unavailabil-

ity of an energy conversion unit on the system flexibility without

employing stochastic optimization. Instead, they use input-output

modeling ( Leontief, 1936 ) based on disruption scenarios to identify

insufficient flexibilities and deduce a step-by-step guide to retrofit

an existing energy system. Another exact algorithm, also based on

scenarios, has been proposed by Caserta and Voß (2015) . They in-

corporate redundancies by transforming the reliability redundancy

allocation problem into a multiple-choice knapsack problem and

employ a multi-period approach to take potential scenarios into

account. Aguilar et al. (2008) consider maintenance and failure

scenarios to design reliable energy supply systems regarding the

largest one, two, or more components to be turned off. Thus, for

the considered scenarios, the resulting energy supply system is

able to provide the necessary amount of energy even if a com-

ponent fails during maintenance of other components. Considering

scenarios of failure implies that a failure of any component not in-

cluded in the scenarios might lead to a lack of energy supply. Thus,

trustworthiness of reliability calculations always depends on the

correct selection of scenarios. 

In power systems engineering, reliable electricity supply is

crucial and an active research area. Thus, many approaches

have been proposed to increase reliability employing optimiza-

tion: Ruiz and Conejo (2015) and Mínguez and García-Bertrand

(2016) employ adaptive robust optimization to solve the trans-

mission expansion planning problem. A scenario-based approach

is proposed by Alguacil et al. (2009) evaluating the trade-

off between investment cost reduction and vulnerability of the

transmission network against attacks using a weighted objective

function. Ruiz et al. (2009) enforce reserve requirements in a
tochastic formulation to compensate the limited representation

f uncertainty by the selection of scenarios. In their paper, un-

ertainty refers to both load uncertainty and generation unrelia-

ility. Choi et al. (2005) propose a methodology based on proba-

ilistic reliability criteria to minimize cost of transmission system

xpansion. In a later paper, Choi et al. (2006) additionally regard

osts of outages. Another well-known approach in power systems

ngineering is (n − K) -reliability. (n − K) -reliability ensures relia-

ility of a power system with n components during the failure

f maximal K components. For K being 1, stochastic approaches

ave been developed to find ( n − 1 )-reliable solutions for net-

ork expansion and transmission switching in reasonable time,

. g., by Wiest et al. (2018) and Hedman et al. (2010) . For the

erman power grid, ( n − 1 )-reliability represents an adequate re-

iability of supply ( Berndt et al., 2007 ). Employing robust opti-

ization, (n − K) -reliability is employed in contingency-constraint

ransmission expansion planning by Moreira et al. (2015) and

dditionally regarding load uncertainty by Hong et al. (2017) .

n contingency-constraint unit commitment, Wang et al. (2013)

nd Street et al. (2011) introduce (n − K) -reliability using a ro-

ust formulation. Street et al. (2011) propose an exact approach

hich does not depend on the cardinality of the uncertainty set.

owever, this approach is based on the assumption of single-

us unit commitment problem in which only upward reserves

eed to be considered. This shortcoming has been overcome by

treet et al. (2014) who also take into account failure in the trans-

ission network. To solve the extended model, a Benders’ de-

omposition approach ( Benders, 1962 ) is necessary. The concept

f reliability is also crucial for DESS. In DESS, several components

re usually operated to supply the desired energy demand. Fail-

re of any component could always occur and the remaining com-

onents would need to compensate the loss to ensure reliable

peration. 

In this paper, we present a rigorous approach ensuring relia-

ility in the design of DESS during the failure of 1 component.

herefore, we newly introduce ( n − 1 )-reliability into the optimal

esign of DESS. The proposed ( n − 1 )-reliability approach follows

he idea of approaches for reliable power systems. However, for

ESS optimization, additional types of final energy need to be

onsidered, e. g., thermal energy. Furthermore, we take into ac-

ount the possible upwards and downwards reserves of supplied

nergy by the components remaining available during failure. Thus,

he proposed rigorous approach does not exclude possibly opti-

al solutions a priori. Hence, our ( n − 1 )-reliable approach ex-

ends existing approaches from power system engineering. More-

ver, the obtained ( n − 1 )-reliable design is independent of select-

ng failure scenarios and independent of failure probabilities. In-

tead, we consider a possible failure of 1 arbitrary component at

ny time. The identified reliable design is able to cover all en-

rgy demands exactly during maintenance or failure. For problems

ith high computational effort, we propose an inexact but com-

utationally efficient approach called ( n − 1 max )-reliability. In this

lternative approach, we ensure sufficient energy supply during

he failure of any component while allowing overproduction. Al-

owing overproduction reduces the optimization problem to the

nalysis of failure of the largest component and is therefore called

 n − 1 max )-reliability. 

The remaining article is structured as follows: First, we intro-

uce the nominal problem without considering any reliability in

ection 2.1 . In the following Sections 2.2 and 2.3 , we introduce our

xact ( n − 1 )-reliable approach and our inexact but computation-

lly efficient ( n − 1 max )-reliable approach. The approaches are ap-

lied to a real-world case study in Section 3 . We summarize and

onclude our research in Section 4 . 
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. Reliable design of distributed energy supply systems 

Reliability of distributed energy supply systems (DESS) is

andatory in practical applications. Security of energy supply and

llowing for maintenance of components at any time is crucial for

ESS since a lack of energy supply can lead to incalculable costs,

. g., due to shutdown of a plant or accidents. To guarantee suf-

cient energy supply, we propose two reliability approaches. We

resent the approaches for a tri-generation system providing elec-

ricity, heating, and cooling energy. However, the concept can be

eneralized to other demands. In our context, we assume that elec-

ricity demands can always be covered by the electricity grid; thus,

e focus on covering heating and cooling demands during fail-

re of components. Before presenting the reliability approaches,

e state the nominal optimization problem for DESS without re-

iability considerations in the next section. 

.1. The nominal model of DESS design 

The considered model of DESS has been published in our ear-

ier work ( Voll et al., 2013 ). The optimization problem is formu-

ated as a mixed integer linear program (MILP) and identifies an

ptimal design (structure of DESS, sizing of components) and an

ptimal operation of the designed DESS. In this paper, each in-

talled component transforms input energy with a constant effi-

iency to output energy. Operation of components is possible be-

ween installed thermal power and a technology-specific minimal

art load. All newly installed components have capacity-dependent

nvestment costs which are piece-wise linearized. For each tech-

ology, the automated superstructure-generation approach from

oll et al. (2013) is applied which successively increases the num-

er of components to build up a superstructure which contains the

ptimal design and is not oversized. The largest possible super-

tructure resulting from this successive approach contains a pre-

efined maximum number of boilers, combined heat and power

ngines, compression chillers, and absorption chillers. In the case

tudy, the maximal number of units per technology is set to 10.

n the model proposed by Voll et al. (2013) , no failure of compo-

ents is taken into account; and thus, no reliability can be ensured.

n the following, we call this model nominal to clearly distinguish

etween the model without considering any failure and the appli-

ation of reliability approaches. 

As objective function, we choose the total annualized costs TAC

o optimize the DESS: 

 AC = 

∑ 

t∈ T 

[ 
�τt 

(
p gas · ˙ U 

gas,buy 
t + p el,buy · ˙ U 

el,buy 
t − p el ,sel l · ˙ V 

el ,sel l 
t 

)] 

+ 

∑ 

k ∈K 

(
1 

P V F 
+ p m 

k 

)
· CAP EX k . 

ere, p gas , p el, buy , and p el, sell are prices for purchasing gas and for

uying and selling electricity, respectively. ˙ U 

gas,buy 
t and 

˙ U 

el,buy 
t rep-

esent the input energy flows of gas and electricity, and 

˙ V el ,sel l 
t 

he output energy flow of electricity in time step t ∈ T . The set T

ontains all time steps t and their corresponding lengths are de-

oted by �τ t . Annual maintenance costs are given as share p m 

k 
f the investment costs CAPEX k of each component k within the

et of all components K which might be installed. The invest-

ent costs CAPEX k are annualized using the present value factor

 Broverman, 2010 ) 

 V F = 

(i + 1) h − 1 

(i + 1) h · i 

ith an interest rate i and a time horizon h . Instead of the total

nnualized costs TAC , any other objective function can be chosen

for a discussion see Hennen et al., 2017 ). 
Besides the influence of the objective function on the opti-

al solution, the optimization depends on physical constraints—

recisely, energy balances. For the nominal problem, the energy

alances are given by: 
 

k ∈K 
˙ V kt = 

˙ E t ∀ t ∈ T . (1)

˙ 
 kt represents the supplied energy flow of component k in time

tep t . The energy demands in time step t are given by ˙ E t . ˙ E t repre-

ents both heating demands ˙ E h t and cooling demands ˙ E c t . For heat-

ng, the energy demand comprises not only the heating require-

ents on the industrial site ˙ E h ,s t , but also the necessary energy
 

k ∈ AC 

˙ V kt 
ηk 

for running the absorption chillers k ∈ AC with coefficient

f performance (COP) ηk : 

˙ 
 

h 
t = 

˙ E h ,s t + 

∑ 

k ∈ AC 

˙ V kt 

ηk 

∀ t ∈ T . (2) 

or more details on the model see Voll et al. (2013) or

ajewski et al. (2017b) . 

.2. ( n − 1 )-reliability: an exact approach for the optimal reliable 

esign 

The idea of ( n − 1 )-reliability is that the designed system can

ompensate the failure of any component out of n components at

ny time—but only 1 at the same time. Thus, a failure of 1 com-

onent during maintenance of another might still lead to a lack of

nergy supply. In other words, we aim for an ( n − 1 )-out-of- n sys-

em ( Birnbaum, 1968 ) in which n − 1 components out of n need to

e fully available to guarantee a 100 % reliable system. To model

 n − 1 )-reliability, we consider all possible scenarios for a failure of

 single component. To implement ( n − 1 )-reliability, we need ad-

itional energy balances for heating and cooling circuits describ-

ng the assumption that any component might fail at any time and

annot provide energy: 

∑ 

 ∈K h \{ k ′ } 
˙ V 

k ′ 
kt = 

˙ E h ,s t + 

∑ 

k ∈ AC\{ k ′ } 

˙ V 

k ′ 
kt 

ηk 

∀ t ∈ T ∀ k ′ ∈ K (3)

∑ 

 ∈K c \{ k ′ } 
˙ V 

k ′ 
kt = 

˙ E c t ∀ t ∈ T ∀ k ′ ∈ K . (4)

he set of components K is divided into heating K 

h and cooling

omponents K 

c . Every possibly failing component k ′ ∈ K leads to a

ew set of energy balances. To formulate these additional energy

alances, we introduce new operation variables ˙ V k 
′ 

kt 
which specify

he adapted output of component k in time step t if component k ′ 
ails. The new operation variables are determined such that the de-

ands can still be covered exactly with the remaining components

\ { k ′ } . 
Since the additional variables ˙ V k 

′ 
kt 

only appear in the constraints

nd not in the objective function, they only impact the design of

he DESS, i. e., the selected components and their sizing. The objec-

ive function remains without any changes which allows replacing

he criterion for the optimization easily. 

The additional energy balances lead to many additional equal-

ty constraints and the problem size scales up polynomially in two

ariables: The number of additional constraints increases propor-

ionally with the number of potentially installed components |K|
imes the number of considered time steps | T |. 

The problem of ( n − 1 )-reliability can also be formulated using

obust optimization. For this purpose, adjustable robustness ( Ben-

al et al., 2004 ) can be employed to describe the adaption of DESS

o a failing component: The remaining components adjust their
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amount of provided energy such that the demands can still be ful-

filled: 

∑ 

k ∈K h 
˙ V kt (ξkt ) − ξkt 

˙ V kt (ξkt ) = 

˙ E h ,s t + 

∑ 

k ∈ AC 

(
˙ V kt (ξkt ) − ξkt 

˙ V kt (ξkt ) 
)

ηk 

(5)

∀ t ∈ T ∀ ξkt ∈ U ∑ 

k ∈K c 
˙ V kt (ξkt ) − ξkt 

˙ V kt (ξkt ) = 

˙ E c t (6)

∀ t ∈ T ∀ ξkt ∈ U . 

The additional operation variables ˙ V kt (ξkt ) depend on the scenario

ξ kt with ξkt = 1 describing the failure of component k in time step

t . The corresponding uncertainty set is given by 

U := 

{ 

ξ ′ 
kt : 

(
ξ ′ 

kt 

)
k ∈K,t∈ T ∈ { 0 , 1 } |K|×| T | , 

∑ 

k ∈K 
ξ ′ 

kt = 1 , ∀ t ∈ T 

} 

. (7)

The sum 

∑ 

k ∈K ξ ′ 
kt 

= 1 ensures that only 1 component fails at the

same time. 

( n − 1 )-reliability can be extended such that the failure of more

than 1 component is taken into account as done for electric-

ity grids by Street et al. (2014) . For DESS, using the notation of

Eqs. (3) and (4) , the following equations need to be added to the

nominal problem: 

∑ 

k ∈K h \{ K ′ } 
˙ V 

K ′ 
kt = 

˙ E h ,s t + 

∑ 

k ∈ AC\{ K ′ } 

˙ V 

K ′ 
kt 

ηk 

∀ t ∈ T ∀ K 

′ ∈ P(K) (8)

∑ 

k ∈K c \{ K ′ } 
˙ V 

K ′ 
kt = 

˙ E c t ∀ t ∈ T ∀ K 

′ ∈ P(K) . (9)

where K 

′ is a subset of the power set P(K) including all combi-

nations of possibly failing heating and cooling components K. The

cardinality of failing components at the same time can be lim-

ited, i. e., |K 

′ | ≤ K. This formulation guarantees (n − K) -reliability.

(n − K) -reliability leads to an exponential increase of the num-

ber of additional equations proportional to 
∑ K 

i =1 

((|K| 
i 

)
· | T | 

)
and

thus of computational time. For DESS, ( n − 1 )-reliability, i. e., K =
1 , is the most basic and commonly applied method of (n − K) -

reliability in engineering practice. Eqs. (8) and (9) are equivalent

to Eqs. (3) and (4) when the failure of only 1 component is con-

sidered. Considering the failure of 1 arbitrary component is often

sufficient ( Aguilar et al., 2008 ). Thus, we focus in this paper on

( n − 1 )-reliable design of energy systems. 

However, employing ( n − 1 )-reliability already leads to an in-

creased problem size which might result in high computational

times. Thus, we propose an alternative, computationally fast ap-

proach while still ensuring sufficient energy supply; however, the

solutions may lead to overproduction during failure of a compo-

nent. 

2.3. ( n − 1 max )-reliability: an inexact approach for the optimal design

ensuring sufficient energy supply 

The idea of ( n − 1 max )-reliability is to be able to supply at

least any required heating and cooling demand during a failure

of any single component at any time but to allow for overpro-

duction. Overproduction describes an operational state in which

more energy is supplied than demanded. If overproduction is al-

lowed, it is sufficient to consider only the failure of the largest

cooling or heating component to cover the failure of any compo-

nent: A larger component can always replace a smaller component.

The only limitation could arise from minimal part-load constraints

for the larger component. Here, this limitation is overcome by al-

lowing overproduction during failure. Any excess energy produced
uring overproduction has to be wasted, i. e., released to the envi-

onment. Alternatively, a component could be operated below the

pecified minimal part-load operation. To be able to supply at least

ll heating demands ˙ E h t and cooling demands ˙ E c t during failure of 1

rbitrary component, we ensure sufficient capacity during the fail-

re of the largest component: ∑ 

k ∈K h / c 
˙ V 

N 
k − ˙ V 

max 
K h / c ≥ ˙ E h / c t ∀ t ∈ T . (10)

gain, K 

h denotes heating components and K 

c cooling compo-

ents. ˙ V N 
k 

represents the installed thermal power of component

 and 

˙ V max 
K h / c the maximal deficit in heating/cooling supply induced

ue to failure of 1 component. The maximal deficit ˙ V max 
K h / c is defined

s the maximal installed heating/cooling energy of 1 single com-

onent: 

˙ 
 

max 
K h / c := max 

{ 

˙ V 

N 
k 

∣∣∣ k ∈ K 

h / c 
} 

(11)

hich can be reformulated by 

˙ 
 

max 
K h / c ≥ ˙ V 

N 
k ∀ k ∈ K 

h / c . (12)

ince the heating demands ˙ E h t also depend on the operation of the

bsorption chillers (see Eq. (2) ), a failure in a cooling circuit might

lso affect the heating circuit: A failing compression chiller could

e replaced by absorption chillers. The replacing absorption chillers

ncrease the heating demand. This dependency needs to be taken

nto account for reliability: 

∑ 

 ∈K h 
˙ V 

N 
k ≥ ˙ E h ,s t + 

∑ 

k ∈ AC 

˙ V kt 

ηk 

+ 

˙ E c AC ∀ t ∈ T . (13)

he installed heating capacity 
∑ 

k ∈K h ˙ V N 
k 

needs to cover at least the

urrent total heating demand of each time step t , i. e., the sum

f ˙ E h ,s t and 

∑ 

k ∈ AC 

˙ V kt 
ηk 

. ˙ E c 
AC 

adds the maximal heating supply due to

ailure of a cooling component: 

˙ 
 

c 
AC = min 

{ 

max 
k ∈ CC 

˙ V 

N 
k 

ηmin 
AC 

;
∑ 

k ∈ AC 

˙ V 

N 
k 

ηk 

} 

. (14)

ere, the first term, 
˙ V N 
k 

ηmin 
AC 

, describes the heating energy

eeded to replace the largest compression chiller by ab-

orption chillers considering their worst coefficient of per-

ormance ηmin 
AC 

. The second term, 
∑ 

k ∈ AC 

˙ V N 
k 
ηk 

corresponds to

he maximal heating energy required by the absorption

hillers. We propose an MILP reformulation of Eq. (14) in

ppendix A.1 . An even tighter but more complex approxima-

ion of the maximal additional heating demand 

˙ E c 
AC 

is given

n Appendix A.2 . 

A failing heating component k ∈ K 

h might also affect a cooling

ircuit since absorption chillers depend on the provided heating

nergy. However, this coupling of circuits is already regarded by

mploying Eq. (2) . 

To model the ability to cover at least the required demands dur-

ng the failure of 1 arbitrary component at any time, we only need

o include Eqs. (10) and (14) to the optimization problem. Since

nly constraints are added to the nominal problem, applying the

 n − 1 max )-reliable approach allows changing the objective function

s easily as in the ( n − 1 )-reliable approach. 

The advantage of ( n − 1 max )-reliability compared to ( n − 1 )-

eliability is that the number of additional constraints is signif-

cantly reduced. Here, the number of additional constraints does

ot depend on the product of number of time steps | T | and com-

onents |K| but only on the sum. Eq. (10) involves 2 · | T | additional

quations which can be further reduced, since the maximal cool-

ng demand is already known and thus not time dependent. Since
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he constraints for calculating the maximal deficit ( Eq. (12) ) only

epend on the set of potentially installed components K = K 

h ∪ K 

c 

ut not on the set of time steps T , the number of additional con-

traints is proportional to the number of potentially installed com-

onents |K| . The number of additional equations for introducing

q. (14) is proportional to the number of cooling components |K 

c |
see Appendix A.1 ). Considering all additional equations, the prob-

em complexity increases proportionally to the sum of number of

ime steps and components | T | + |K| . As a result, the expected in-

rease in computational time compared to the nominal problem is

ow—at the cost of potential overproduction. 

. Case study 

In this section, the proposed reliability approaches are applied

o a real-world case study of an industrial park. The case study is

ased on a nominal design problem of a distributed energy sup-

ly system (DESS) published by Voll et al. (2013) . The problems

re implemented in GAMS 24.7.3 ( McCarl and Rosenthal, 2016 ) and

PLEX 12.6.3.0 ( IBM Corporation, 2015 ) is used to solve the prob-

ems to machine accuracy on a computer with 3.24 GHz and 64 GB

AM employing 4 threads. 

.1. Description of the real-world industrial site 

The analyzed industrial park comprises a heating system and

 cooling system which is divided into two separated cooling cir-

uits: Site A and Site B . The time-varying heating, cooling, and elec-

ricity demands are time-aggregated. Additionally, peak demands

re considered (see Fig. 1 and Table B.1 ). 

The energy demands can be covered by installing combined

eat and power engines CHP , boilers B , absorption chillers AC ,

nd compression chillers CC . Minimal part-load operation of com-

onents is taken into account based on equipment data sheets

 Voll et al., 2013 ): The minimal part load of combined heat and

ower engines is 50 % of the installed thermal power. All remain-

ng technologies can operate between 20 % of the installed power

nd full load. 

We optimize the total annualized costs TAC as objective func-

ion using an interest rate i of 8 % and a time horizon h of 4 years

o calculate the present value factor PVF . Furthermore, we assume

 “green field” without existing energy system components on the

ndustrial site. However, the proposed reliability approaches can

lso be employed for reliable optimal retrofit of DESS. Expected

olutions would comprise existing components with possibly poor

fficiencies as spare components to prevent additional investment

osts. 
Fig. 1. Heating and cooling demands of the real-world industrial site. 

F

p

(

n

a

r

t

a

A

.2. Reliable designs for the distributed energy supply system 

To evaluate the reliability approaches introduced in

ections 2.2 and 2.3 , we consider a pragmatic approach from

ngineering practice as benchmark: After identifying an optimal

esign, the largest component of each heating and cooling circuit

s installed twice to increase reliability of the DESS when allowing

verproduction. We call this approach ( 2 × max )-reliability . The

orresponding design is called ( 2 × max )-reliable design d (2 × max) . 

In the following, we compare results of the nominal problem

o the heuristic (2 × max)-reliable approach, the inexact ( n − 1 max )-

eliable approach (see Section 2.3 ), and the exact ( n − 1 )-reliable

pproach (see Section 2.2 ). Fig. 2 shows the selected components

nd their sizing (i. e., the optimal design) for the nominal problem

nd the three reliability approaches. 

The (2 × max)-reliable design d (2 × max) has the same compo-

ents as the nominal design d nom but includes twice the largest

omponent of each circuit. This approach usually leads to high

nvestment costs and, in general, failure of a small component

ight lead to high overproduction. In the presented case study,

he (2 × max)-reliable design d (2 × max) can compensate the failure

f any component and is able to fulfill the ( n − 1 )-reliable energy

alances ( Eqs. (3) and (4) ). In general, there could be cases where

he (2 × max)-reliable design is not fully reliable: If an absorption

hiller is installed twice and the only compression chiller fails, the

dditionally needed heating supply might not be covered by the

nstalled components. However, this scenario seems rather fabri-

ated and unlikely in practice. 

Employing ( n − 1 max )-reliability and ( n − 1 )-reliability leads to

early identical reliable designs: For most component types, the

esigns comprise more and smaller components than the nominal

nd the (2 × max)-reliable design. As a result, the designs have a

igher system flexibility. In general, the ( n − 1 max )-reliable design

 

( n −1 max ) cannot guarantee to cover energy demands exactly and

ight lead to overproduction if small components fail. Such de-

igns are discussed in Section 3.3 . Here, no overproduction occurs
ig. 2. Installed components and their installed thermal capacities for each ap- 

roach: components of nominal design d nom (without considering failure), of 

2 × max)-reliable design d (2 × max) (doubling the largest component of the nomi- 

al design for each circuit), of ( n − 1 max )-reliable design d ( n −1 max ) (inexact approach 

llowing failure of any component but allowing overproduction), and of ( n − 1 )- 

eliable design d (n −1) (exact method allowing failure of any component) for each 

echnology from left to right; B boiler, CHP combined heat and power engine, CC A 
nd CC B compression chillers, and AC A and AC B absorption chillers installed on Site 

 and Site B, respectively. 
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Fig. 3. Total annualized costs TAC , operational costs OPEX , and (annualized) invest- 

ment costs CAPEX of the nominal problem and the reliability approaches. 
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during failure, if the ( n − 1 max )-reliable design d ( n −1 max ) is imple-

mented. 

The increase in costs compared to the nominal problem differs

for the three reliability approaches ( Fig. 3 ). 

The total annualized costs TAC (2 × max) for the (2 × max)-reliable

design d (2 × max) lie 5.6 % above the costs for the nominal design

d nom . Even though the (2 × max)-reliable design d (2 × max) involves

the highest increase in costs, reliability for all possible failures can-

not be guaranteed in general without possibly high overproduc-

tion. The total annualized costs for the designs of the ( n − 1 max )-

reliable approach and of the ( n − 1 )-reliable approach are only

3.9 % higher than costs for the nominal design d nom . Thus, both

( n − 1 max )-reliability and ( n − 1 )-reliability save 30.4 % of the addi-

tional costs for a reliable system. 

Operational costs OPEX are nearly identical for all designs with

only 0.8 % variation. The values take 5.25 Mio. €/a for the nom-

inal problem and (2 × max)-reliability, and 5.29 Mio. €/a for the

proposed reliability approaches. Significant differences can be ob-

served in the investment costs CAPEX ( Fig. 3 ): The nominal de-

sign induces 3.28 Mio. € investment costs, whereas the (2 × max)-

reliable design induces 4.42 Mio. € corresponding to an increase

of 34.8 %. In contrast, the ( n − 1 max )-reliable and ( n − 1 )-reliable

designs involve only lower additional investment costs compared

to the nominal design d nom , i. e., 0.71 Mio. € corresponding to

an increase of 21.6 %. Compared to the heuristic (2 × max)-reliable

approach, the ( n − 1 max )-reliable and ( n − 1 )-reliable designs save
Table 1 

Deviation of the total annualized costs from th

as well as the CPU time for the original dem

instances. 

Instance Increase of TAC nom in % 

2 × max n − 1 max n − 1 

original 5.6 3.9 3.9 

1 5.7 3.9 3.9 

2 5.3 3.8 3.8 

3 5.6 3.9 3.9 

4 5.6 3.9 3.9 

5 5.9 4.0 4.0 

6 5.7 3.9 3.9 

7 5.6 3.9 3.9 

8 5.5 3.7 3.7 

9 5.7 3.8 3.8 

10 5.6 3.9 3.9 
7.7 % of the increase in investment costs. Especially in industry,

ow up-front costs are attractive. 

The results show that cost-efficient reliable design options can

e identified with both proposed reliability approaches. 

.3. Assessment of reliability approaches 

In order to assess our approaches, we vary the demand time se-

ies by ± 5 % using latin-hypercube sampling ( McKay et al., 20 0 0 ).

ven for such slight perturbations, the obtained optimal solutions

nd the performance of MILP solvers can vary dramatically. Thus,

e consider 10 varied instances of our original demand time series

n the following. 

For the 10 instances and for the original time series,

able 1 shows the deviation of the total annualized costs from the

ominal total annualized costs TAC nom as well as the CPU time for

omputation. 

The results show that the costs for the ( n − 1 max )-reliable de-

ign d ( n −1 max ) and the ( n − 1 )-reliable design d (n −1) are equal for

ll instances. Both proposed reliability approaches reduce the to-

al annualized costs compared to the heuristic (2 × max)-reliable

pproach. For all instances, reliability can be achieved with a low

ncrease of total annualized costs, i. e., 3.9 % on average. Further-

ore, the shares of operational costs, maintenance costs, and in-

estment costs are similar to the original time series ( Fig. 3 ). The

esults show that the increase in investment costs for a reliable

esign can be reduced by up to 45.7 % compared to the heuris-

ic (2 × max)-reliability. The operational costs and the investment

osts including their corresponding variation for the instances are

resented in Fig. C.1 . The variation of the demands shows that the

xpected additional costs for a reliable design are low if ( n − 1 max )-

eliability or ( n − 1 )-reliability is employed. 

Computational times of the different approaches, also listed

n Table 1 , show the advantage of the ( n − 1 max )-reliable ap-

roach: The ( n − 1 max )-reliable approach is more than 19.6 times

aster than the ( n − 1 )-reliable approach. Moreover, the ( n − 1 max )-

eliable approach is only maximal 2.7 times slower than the

2 × max)-reliable approach which identifies designs involving high

dditional costs. Thus, the ( n − 1 max )-reliable approach clearly out-

erforms (2 × max)-reliability and ( n − 1 )-reliability in both com-

utational time and expected costs for a reliable design. However,

he ( n − 1 max )-reliable approach might identify solutions leading to

verproduction during failure. 

The differing com putational times of the approaches are the

esult of their respective model scales. For the original instance,

he numbers of variables and equations after presolve are given

n Table 2 . The numbers for (2 × max)-reliability comprise values

or the nominal problem plus numbers for additional optimization
e nominal total annualized costs TAC nom 

and time series and the additional 10 

CPU time in s 

nom 2 × max n − 1 max n − 1 

5.7 5.8 15.3 299.3 

6.0 6.0 15.3 506.8 

5.6 5.7 15.2 388.1 

5.6 5.6 15.0 555.7 

5.6 5.6 15.1 556.4 

5.7 5.8 15.2 369.4 

5.7 5.8 14.9 315.7 

5.6 5.7 15.0 492.1 

5.7 5.7 15.1 372.6 

5.6 5.7 15.2 407.8 

5.7 5.8 15.1 559.3 
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Table 2 

Number of equations, continuous variables, and binary variables of the 

nominal problem and the three reliability approaches. 

Approach Equations Continuous variables Binary variables 

nom 657 264 102 

2 × max 678 278 111 

n − 1 max 1435 491 227 

n − 1 31852 9220 4774 

Fig. 4. Selected components and their installed thermal power for instance 7 of 

the varied demand time series; components of nominal design d nom , of (2 × max)- 

reliable design d (2 × max) , of ( n − 1 max )-reliable design d ( n −1 max ) , and of ( n − 1 )-reliable 

design d (n −1) for each technology from left to right; B boiler, CHP combined heat 

and power engine, CC A and CC B compression chillers, and AC A and AC B absorption 

chillers installed on Site A and Site B, respectively. 
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f operation with the added largest unit. The ( n − 1 max )-reliability

pproach additionally involves 2 indicator variables in GAMS for

electing whether Eqs. (A.1) or (A.4) is active. 

Analyzing the instances of the demand time series shows that

 of the 10 instances lead to ( n − 1 max )-reliable designs d ( n −1 max ) 

hich cannot cover the energy demands exactly if 1 component

ails. We call these solutions inexact . All inexact ( n − 1 max )-reliable

esigns suffer from the same shortcoming: If a small component

ails, overproduction is necessary to guarantee sufficient energy

upply in the time step with minimal cooling demand. Table 3 lists

ll possibly occurring overproduction induced by inexact solutions.

In order to analyze the reason for overproduction, we take a

loser look at the design of a typical inexact solution of ( n − 1 max )-

eliability. Fig. 4 shows the designs for instance 7 of the varied de-

and time series. The corresponding demands of instance 7 used

s input for the optimization are listed in Table B.2 . 

Here, we focus on the differences between the ( n − 1 max )-

eliable design d ( n −1 max ) and the ( n − 1 )-reliable design d (n −1) . In

he ( n − 1 max )-reliable design d ( n −1 max ) , the boilers are slightly

maller than in the ( n − 1 )-reliable design d (n −1) . However, the ac-
Table 3 

Necessary overproduction for all instances leading to inexact 

( n − 1 max )-solutions to cover energy demands; overproduction 

only occurs in the time step with minimal cooling demand. 

Instance Overproduction in kW Overproduction in % 

4 24 2.6 

5 58.6 6.4 

7 49.1 5.6 

9 107.3 12.3 

e  

c  

f  

o  

c

 

h  

c  

i  

a  

t  
ual difference leading to overproduction is the larger sizing and

he smaller number of absorption chillers on Site A ( AC A ) in the

 n − 1 max )-reliable design d ( n −1 max ) : If the small and unique com-

ression chiller on Site A ( CC A ) fails, the minimal part load of the

eplacing absorption chillers is too high to cover the minimal cool-

ng demand exactly. However, in instance 7, only 49.1 kW of cool-

ng are additionally produced which corresponds to 5.6 % of the

eeded cooling supply in this time step ( Table 3 ). The occurring

verproduction can be avoided by running 1 absorption chiller in

art load with 18.9 % of the nominal installed power. 

For the remaining inexact solutions, the reason for overproduc-

ion is exactly the same. To avoid overproduction for the remaining

nexact solutions, it is sufficient to decrease the part load of the

bsorption chiller to a minimum of 17.8 % of the nominal installed

ower. This required part load is below the specified minimal part

oad of 20 % for the selected absorption chillers (see Section 3.1 ).

owever, in practice, a slight decrease of the minimal part load

r a slight overproduction for a short time might be justifiable in

mergencies. 

The analysis shows that overproduction is only a minor prob-

em in the considered case study. Nevertheless, we want to intro-

uce an idea how the ( n − 1 max )-reliable approach can easily be

urther improved if desired: Just as for the failure of the largest

omponent ensuring covering maximal demands, it is possible to

dd further constraints ensuring that the smallest demands can

e covered exactly without the component with the smallest part

oad. As in the original ( n − 1 max )-reliable approach, both heating

nd cooling circuits need to be considered in the constraints. Such

n extended approach would reduce the risk of solutions leading to

verproduction; however, inexact solutions involving overproduc- 

ion might still occur. The case study shows that the ( n − 1 max )-

eliable approach performs well even without the introduced ex-

ension. 

The increase in computational time compared to the nominal

roblem is low. Moreover, ( n − 1 max )-reliability enables the design

f flexible DESS ensuring sufficient energy supply during failure

ith only slightly increased total annualized costs. 

. Conclusions 

In the design of distributed energy supply systems (DESS), reli-

bility of the system is an important but often neglected issue. We

ropose an approach to identify exact ( n − 1 )-reliable designs for

ESS. Our ( n − 1 )-reliable approach ensures reliable energy supply

uring the failure of 1 component at any time. Thus, the approach

lso enables to maintain components at any time if no failure oc-

urs simultaneously. 

The number of additional constraints in the ( n − 1 )-reliable ap-

roach depends on the product of the number of potentially in-

talled components and the number of time steps leading to a

olynomial increase of the problem complexity. Thus, the exact

lgorithm might lead to high computational effort. For this rea-

on, we propose also a time-efficient inexact approach, called ( n −
 

max )-reliability which ensures that all demands can still be cov-

red if 1 component fails but allows for overproduction. The time-

fficient ( n − 1 max )-reliable approach involves only few additional

onstraints and the increase in computational time is low. There-

ore, ( n − 1 max )-reliability would allow increasing model accuracy

r coupling reliability with other optimization approaches with in-

reased computational time, e. g., multi-objective optimization. 

An industrial real-world case study shows that pragmatic

euristics from industry applications, such as installing redundant

omponents by rules of thumb, lead to unnecessary high additional

nvestment costs for reliability. Employing both the proposed exact

nd inexact reliability approaches, we obtain well-performing solu-

ions during failure and achieve savings of 30.4 % in the additional
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Table B.1 

Thermal demands (for cooling on Site A and Site B) as well as electricity demands; 

time step t 1 to t 5 are time-aggregated values; t 6 and t 7 represent minimal and max- 

imal peak demands. 

Demands t 1 t 2 t 3 t 4 t 5 t 6 t 7 

coolA in kW 1446 1780 2540 3137 3982 905 12262 

coolB in kW 727 773 844 877 921 467 1714 

heat in kW 4272 3308 24 4 4 2333 2289 9463 1473 

electricity in kW 5446 5443 5431 5419 5451 7911 7911 

Table B.2 

Thermal and electricity demands (for cooling on Site A and Site B); original time 

series varied by employing latin-hypercube sampling with ± 5 %; time step t 1 to 

t 5 are time-aggregated values; t 6 and t 7 represent minimal and maximal peak de- 

mands. 

Demands t 1 t 2 t 3 t 4 t 5 t 6 t 7 

coolA in kW 1415 1747 2430 3129 4168 879 11797 

coolB in kW 694 788 802 844 947 473 1705 

heat in kW 4205 3293 2404 2312 2378 9708 1461 

electricity in kW 5710 5181 5300 54 4 4 5342 7663 7657 
total annualized costs compared to pragmatic heuristics from in-

dustry applications. The increase in the investment costs for a reli-

able design can even be reduced by 37.7 % employing the proposed

reliability approaches. Reliable designs of the proposed ( n − 1 )-

reliable approach and the ( n − 1 max )-reliable approach lead to an

increase in total annual costs of only 3.9 % compared to the total

annualized costs of an optimal system design without providing

any reliability. Thus, our proposed approaches enable to identify

optimal reliable designs for distributed energy supply systems at

low additional costs. The exact ( n − 1 )-reliable approach can ensure

reliability while ( n − 1 max )-reliability provides a well-performing

inexact approach which is easy to implement and which involves

low additional computational effort. 

Employing the proposed reliability approaches ensures that any

component can be maintained at any time and ensures sufficient

energy supply during failure of any component. Thereby, unpre-

dictable costs can be avoided and security in industrial applications

can be improved significantly. 
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Appendix A. The maximal additionally needed heating supply 

due to failure of a cooling component 

A.1. Reformulation of equation constraining the maximal additional 

heating ˙ E c 
AC 

To obtain an MILP, we reformulate Eq. (14) by: 

˙ E c AC ≥ x ·
˙ V 

max 
CC 

ηmin 
AC 

(A.1)

ηmin 
AC ≤ ηk ∀ k ∈ AC (A.2)

˙ 
 

max 
CC ≥ ˙ V 

N 
k ∀ k ∈ CC (A.3)

˙ E c AC ≥ y ·
∑ 

k ∈ AC 

˙ V 

N 
k 

ηk 

(A.4)

x + y = 1 (A.5)

x, y ∈ { 0 , 1 } . (A.6)

The bilinear products with the binary variables x and y in

Eqs. (A.1) and (A.4) can be linearized, e. g., using Glover’s lineariza-

tion (see Glover, 1975 ). The binary variables x and y activate and

deactivate the lower bound of the maximal additionally needed

heating supply for absorption chillers during the failure of a cool-

ing component ˙ E c 
AC 

. Since only 1 bound needs to be active (see

Eq. (A.5) ), the maximal additional heating supply ˙ E c 
AC 

takes its min-

imum as claimed in Eq. (14) . 

A.2. Tightened formulation of the maximal additional heating ˙ E c 
AC 

The additional heating demand 

˙ E c 
AC 

(see Eq. (14) ) can be ap-

proximated even more accurately if each time step t is considered

separately: 

˙ E c AC,t = min 

{ 

max 
k ∈ CC 

˙ V 

N 
k 

ηmin 
AC 

;
∑ 

k ∈ AC 

˙ V 

N 
k 

ηk 

−
∑ 

k ∈ AC 

˙ V kt 

ηk 

;
˙ E c t 

ηmin 
AC 

−
∑ 

k ∈ AC 

˙ V kt 

ηk 

} 

. 

(A.7)
ere, the first term remains the same as in Eq. (14) (see

ection 2.3 ). The second term, 
∑ 

k ∈ AC 

˙ V N 
k 
ηk 

− ∑ 

k ∈ AC 

˙ V kt 
ηk 

, reduces the

aximal heating energy required by all absorption chillers by the

mount of energy which is already reserved for the absorption

hillers in the current operation. The third term takes into account

he cooling demand on site ˙ E c t which limits the additional heating

emand 

˙ E c 
AC,t 

by 
˙ E c t 

ηmin 
AC 

− ∑ 

k ∈ AC 

˙ V kt 
ηk 

. 

To obtain an MILP, we reformulate Eq. (A.7) by: 

˙ 
 

c 
AC ,t ≥ x t ·

˙ V 

max 
CC 

ηmin 
AC 

∀ t ∈ T (A.8)

min 
AC ≤ ηk ∀ k ∈ AC (A.9)

˙ 
 

max 
CC ≥ ˙ V 

N 
k ∀ k ∈ CC (A.10)

˙ 
 

c 
AC,t ≥ y t ·

( ∑ 

k ∈ AC 

˙ V 

N 
k 

ηk 

−
∑ 

k ∈ AC 

˙ V kt 

ηk 

) 

∀ t ∈ T (A.11)

˙ 
 

c 
AC,t ≥ z t ·

( 

˙ E c t 

ηmin 
AC 

−
∑ 

k ∈ AC 

˙ V kt 

ηk 

) 

∀ t ∈ T (A.12)

 t + y t + z t = 1 ∀ t ∈ T (A.13)

, y, z ∈ { 0 , 1 } t . (A.14)

gain, Glover’s linearization (see Glover, 1975 ) can be used to lin-

arize the bilinear products with the binary variables x, y , and z . 

ppendix B. Energy demands 

Thermal demands of the industrial park also shown in Fig. 1 are

isted in Table B.1 as well as the electricity demands. The energy

emands are employed for calculations in Section 3.2 . 

The thermal and electricity demands of instance 7 of the time

eries variation employing latin-hypercube sampling with ±5 % are

isted in Table B.2 . The corresponding solutions are discussed in

etail in Section 3.3 . 
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Fig. C.1. Operational costs OPEX and investment costs CAPEX for the instance lead- 

ing to the median of the nominal total annualized costs; error bars show the ranges 

in which all solutions for the other instances lie inside. 
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ppendix C. Costs for solutions based on varied demand data 

Fig. C.1 shows the operational costs and investment costs for

nstance 6. Instance 6 leads to the median of the nominal total an-

ualized costs. Additionally, the ranges of all other instances are

llustrated. 
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