Success stories in Helmholtz technology transfers

Technology transfer in the Helmholtz Association comprises numerous forms of so-called “Transfer through brains” – for example, the exchange of a scientist out of a Helmholtz Centre to a business enterprise, or collaboration projects and license agreements with enterprises. In reference to the transfer in business application, a very successful result has been presented. In the three most significant transfer channels – collaborations with enterprises, license agreements and spin-offs – the numbers provide evidence, as do many success stories about the committed work involving scientists and transfer experts at the Helmholtz Centres.


Another way to transfer findings and exploit technologies is to conclude licencing agreements or to secure trademark rights. These rights are usually industrial property rights like patents or registered designs. They are held by the Helmholtz Centres, as, under the German Employee Invention Act, scientists’ inventions are usually the property of the research institute where they work. Once a Helmholtz Centre decides to register a patent after an invention has been reported, the trademark rights granted can then be sold or licenced. Inventors are always given a share of the profits. In 2013 income from a total of more than 1,500 licence agreements at the Helmholtz Centres came to about €20 million. Each year, around 400 trademark applications are made and a similar number of patents are granted. To date, the Helmholtz Centres have a total of 4,000 industrial property rights.

Fast-particle cure

A treatment method developed at the GSI offers new hope for tumour patients 

The particle accelerators at the GSI Helmholtz Centre for Heavy Ion Research are generally used for basic research in physics. But in one project, they are being applied for medical purposes. In collaboration with doctors at the radiology department at Heidelberg University Hospital and at the German Cancer Research Centre, physicists at the GSI developed a new method to treat cancer with ion-beam therapy. Targeted irradiation with carbon ions from particle accelerators has proven effective in treating tumours and leaves the surrounding healthy tissue largely unaffected. It also makes it possible to effectively treat tumours in other areas, such as the brain. The therapy is recognised as a form of medical treatment and has been used by the Heidelberg Ion-Beam Therapy Center (HIT) since 2009. Working on the basis of a GSI patent, Siemens AG designed a turnkey ion-beam therapy facility. The first one is being used at Universitätsklinikum Gießen und Marburg, and more have been planned for Kiel and Shanghai. Siemens recently concluded another supplementary licence agreement with GSI. It is for a bio-physical model developed in Darmstadt that allows the radiation to be planned and prepared in detail.

Rocket burners in homes

Technology developed at DLR used in heating systems for over 30 years 

Most homeowners would not dream that they have space-age technology in their cellar. However, it is now the case that more than half a million oil heating systems work using the “blue burner” technology developed at the German Aerospace Center (DLR). Since 1977, several European companies, including MAN and Buderus (now Bosch), have acquired the rights to use this environmentally friendly technology. The blue burner is therefore a prime example of how technology transfer can be effective in the long term. The process was developed using DLR’s extensive expertise in developing rocket engines, and has since been improved thanks to collaboration with license holders. The basic idea is that the fuel oil is vaporised in the mixing zone prior to combustion. Hot exhaust gas from the combustion chamber is channelled into the mixing zone where it meets the vaporised oil and air from outside. As it is vaporised, the fuel oil is very evenly distributed and therefore burns almost completely – with a blue flame instead of the usual yellow one. Not only does this mean less oil is needed, the flame is also virtually soot-free and the exhaust fumes contain very low amounts of carbon monoxide and nitrogen oxide.

Pioneering work on new vaccine

DKFZ lays the foundations for a cancer vaccination

Cervical cancer is the second most common form of cancer among women. It is caused by an infection with human papillomaviruses (HPV), which also cause warts. That today there is a drug called Gardasil® that can vaccinate girls against the disease is partly down to researchers at the German Cancer Research Centre (DKFZ). Most worthy of note is Prof. Harald zur Hausen, who was the first to postulate that HPV might play a role in the development of cervical cancer. He was later awarded a Nobel Prize for his findings. Since Gardasil® was launched on the market in 2006 the DKFZ has made millions in license revenue. Another development in Heidelberg is also promising success: DKFZ researchers have found a way to diagnose women with an increased risk of cervical cancer more accurately than ever. Smear tests, the routine procedure used until now, have often produced incorrect findings. The new test promises significantly more accurate results, removing the need for complicated follow-up examinations, which are often uncomfortable for women. The pharmaceutical company Roche has already licensed the procedure with the intention of developing it further and bringing it onto the market.

From lab to computer

The GMR effect brought more than a Nobel Prize to Forschungszentrum Jülich – it also brought high licensing revenue 

When at the end of the 1980s Peter Grünberg discovered the GMR or giant magnetoresistance effect in his lab at what is now Forschungszentrum Jülich, he did not just cause a sensation in the scientific world – he revolutionised computer technology. The effect describes the huge leap in electrical resistance that occurs in a system of alternating, thin magnetic and non-magnetic layers when there is only a very small change in the magnetic field surrounding them. Even then the researchers involved were sure that GMR was a significant discovery – and on 16 August 1988 they registered the patent, just 14 days before their French rivals. They hoped that the patent would pay off, but they could never have known how much. Just nine years later IBM, with its Jülich license, brought the first GMR product out on the market. The new read heads contained sensors with this kind of GMR magnetic layering, enabling them to read data stored extremely densely in tightly packed, ultra-thin magnetic layers on a hard drive. This boosted the storage capacity of hard drives considerably. IBM became the first license holder in 1995. Thanks to its strategic thinking, Forschungszentrum Jülich did not grant it an exclusive license and was therefore able to sell the license to 13 more companies, including Siemens, Hitachi and Seagate. This allowed the research centre to generate remarkably high license revenues totalling more than €10 million. Today nearly every computer hard drive makes use of this technology. In 2007 Peter Grünberg – along with his French rival Albert Fert – was awarded the Nobel Prize in Physics for his work on the GMR effect.

Sonar for tunnel construction

GFZ develops a system for analysing rock when boring tunnels 

Tunnel construction is both a costly and complicated business. The rock has to be carefully analysed in advance to ensure the giant borer can quickly and securely drill its way through the different layers. Scientists at the Helmholtz Centre Potsdam GFZ ‒ German Research Centre for Geosciences have worked in close cooperation with industry partners to develop the Integrated Seismic Imaging System ISIS, which works in a similar way to medical ultrasound scans. Herrenknecht AG, the market leader for mechanised tunnelling equipment, recognised the market potential of ISIS, and in late 2007 and 2009 it acquired licenses for the technology. Now the system is ready to go into production. GFZ has registered 10 patents relating to the entire system and to individual components. These cover the source, the soundwaves that are sent into the rock, and a receiver system made up of specialised microphones. The software for evaluating the data is also protected by copyright. The ISIS system has the great advantage that the emitter can be built into the cutter head and the receiver into the rock anchors, which are used to stabilise the roof of the tunnel. The rock can therefore be analysed during boring, without the need for any additional drilling. As its use in the recent construction of the Gotthard Tunnel proved, this not only improves safety, it also saves the company time and money.

Print Version